2019-2020年高中数学 2.3.3直线与平面垂直 平面与平面垂直的性质全册精品教案 新人教A版必修2

2019-2020年高中数学 2.3.3直线与平面垂直 平面与平面垂直的性质全册精品教案 新人教A版必修2

ID:45481996

大小:286.80 KB

页数:6页

时间:2019-11-13

2019-2020年高中数学 2.3.3直线与平面垂直 平面与平面垂直的性质全册精品教案 新人教A版必修2_第1页
2019-2020年高中数学 2.3.3直线与平面垂直 平面与平面垂直的性质全册精品教案 新人教A版必修2_第2页
2019-2020年高中数学 2.3.3直线与平面垂直 平面与平面垂直的性质全册精品教案 新人教A版必修2_第3页
2019-2020年高中数学 2.3.3直线与平面垂直 平面与平面垂直的性质全册精品教案 新人教A版必修2_第4页
2019-2020年高中数学 2.3.3直线与平面垂直 平面与平面垂直的性质全册精品教案 新人教A版必修2_第5页
资源描述:

《2019-2020年高中数学 2.3.3直线与平面垂直 平面与平面垂直的性质全册精品教案 新人教A版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学2.3.3直线与平面垂直平面与平面垂直的性质全册精品教案新人教A版必修2(一)教学目标1.知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.(二)教学重点、难点两个性质定理的证明.(三

2、)教学方法学生依据已有知识和方法,在教师指导下,自主地完成定理的证明、问题的转化.教学过程教学内容师生互动设计意图新课导入问题1:判定直线和平面垂直的方法有几种?问题2:若一条直线和一个平面垂直,可得到什么结论?若两条直线与同一个平面垂直呢?师投影问题.学生思考、讨论问题,教师点出主题复习巩固以旧带新探索新知一、直线与平面垂直的性质定理1.问题:已知直线a、b和平面,如果,那么直线a、b一定平行吗?已知求证:b∥a.证明:假定b不平行于a,设=0b′是经过O与直线a平行的直线∵a∥b′,生:借助长方体模型AA′、BB′、CC′、DD

3、′所在直线都垂直于平面ABCD,它们之间相互平行,所以结论成立.师:怎么证明呢?由于无法把两条直线a、b归入到一个平面内,故无法应用平行直线的判定知识,也无法应用公理4,有这种情况下,我们采用“反证法”师生边分析边板书.借助模型教学,培养几何直观能力.∴b′⊥a即经过同一点O的两线b、b′都与垂直这是不可能的,因此b∥a.2.直线与平面垂直的性质定理垂直于同一个平面的两条直线平行简化为:线面垂直线线平行,反证法证题是一个难点,采用以教师为主,能起到一个示范作用,并提高上课效率.探索新知二、平面与平面平行的性质定理1.问题黑板所在平面

4、与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?2.例1设,=CD,,AB⊥CD,AB⊥CD=B求证AB证明:在内引直线BE⊥CD,垂足为B,则∠ABE是二面角的平面角.由知,AB⊥BE,又AB⊥CD,BE与CD是内的两条相交直线,所以AB⊥3.平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直简记为:面面垂直线面垂直.教师投影问题,学生思考、观察、讨论,然后回答问题生:借助长方体模型,在长方体ABCD–A′B′C′D′中,面A′ADD′⊥面ABCD,A′A⊥AD,AB⊥A′A∵∴A′A⊥面A

5、BCD故只需在黑板上作一直线与两个平面的交线垂直即可.师:证明直线和平面垂直一般都转化为证直线和平面内两条交线垂直,现AB⊥CD,需找一条直线与AB垂直,有条件还没有用,能否利用构造一条直线与AB垂直呢?生:在面内过B作BE⊥CD即可.师:为什么呢?学生分析,教师板书本例题的难点是构造辅助线,采用分析综合法能较好地解决这个问题.典例分析例2如图,已知平面,,直线师投影例2并读题生:平行a满足,,试判断直线a与平面的位置关系.解:在内作垂直于与交线的直线b,因为,所以因为,所以a∥b.又因为,所以a∥.即直线a与平面平行.例3设平面⊥

6、平面,点P作平面的垂线a,试判断直线a与平面的位置关系?证明:如图,设=c,过点P在平面内作直线b⊥c,根据平面与平面垂直的性质定理有.因为过一点有且只有一条直线与平面垂直,所以直线a与直线b垂合,因此.师:证明线面平行一般策略是什么?生:转证线线平行师:假设内一条直线b∥a则b与的位置关系如何?生:垂直师:已知,怎样作直线b?生:在内作b垂直于、的交线即可.学生写出证明过程,教师投影.师投影例3并读题,师生共同分析思路,完成证题过程,然后教师给予评注.师:利用“同一法”证明问题主要是在按一般途径不易完成问题的情形下,所采用的一种数

7、学方法,这里要求做到两点.一是作出符合题意的直线不易想到,二是证直线b与直线a重合,相对容易一些,本题注意要分类讨论,其结论也可作性质用.巩固所学知识,训练化归能力.巩固所学知识,训练分类思想化归能力及思维的灵活性.随堂练习1.判断下列命题是否正确,正确的在括号内画“√”错误的画“×”.(1)a.垂直于同一条直线的两个平面互相平行.(√)b.垂直于同一个平面的两条直线互相平行.(√)c.一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直.(√)(2)已知直线a,b和平面,且a⊥b,a⊥,则b学生独立完成巩固、所学知识与

8、的位置关系是.答案:b∥或b.2.(1)下列命题中错误的是(A)A.如果平面⊥平面,那么平面内所有直线垂直于平面.B.如果平面⊥平面,那么平面内一定存在直线平行于平面.C.如果平面不垂直平面,那么平面内一定不存在直线垂直于平面.D.如

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。