2019-2020年高二数学下学期期初考试试卷(含解析)

2019-2020年高二数学下学期期初考试试卷(含解析)

ID:45444976

大小:126.00 KB

页数:14页

时间:2019-11-13

2019-2020年高二数学下学期期初考试试卷(含解析)_第1页
2019-2020年高二数学下学期期初考试试卷(含解析)_第2页
2019-2020年高二数学下学期期初考试试卷(含解析)_第3页
2019-2020年高二数学下学期期初考试试卷(含解析)_第4页
2019-2020年高二数学下学期期初考试试卷(含解析)_第5页
资源描述:

《2019-2020年高二数学下学期期初考试试卷(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高二数学下学期期初考试试卷(含解析)一、选择题1.某单位有职工52人,现将所有职工随机编号,用系统抽样的方法抽取一个容量为4的样本,已知6号,32号,45号职工在样本中,则样本中还有一个职工的编号是()A.19B.20C.18D.21考点:系统抽样方法.专题:概率与统计.分析:根据系统抽样的特征可知抽样是等距抽样的原则,构造一个等差数列,将四个职工的号码从小到大成等差数列,建立等式关系,解之即可.解答:解:设样本中还有一个职工的编号是x号,则用系统抽样抽出的四个职工的号码从小到大排列:6号、x号、32号、45号,它们构

2、成等差数列,∴6+45=x+32,x=6+45﹣32=19因此,另一学生编号为19.故选A.点评:系统抽样过程中,每个个体被抽取的可能性是相等的,系统抽样的原则是等距,抓住这一原则构造等差数列,是我们常用的方法.2.双曲线=1的渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:把双曲线的标准方程中的1换成0即得渐近线方程,化简即可得到所求.解答:解:∵双曲线方程为=1,∴渐近线方程为=0,即y=±x,故选:A.点评:本题考查双曲线的标准方程,以及双曲线的

3、简单性质的应用,把双曲线的标准方程中的1换成0即得渐近线方程.3.如果执行如图的程序框图,若输入n=6,m=4,那么输出的p等于()A.720B.360C.240D.120考点:程序框图.专题:算法和程序框图.分析:执行程序框图,写出每次循环得到的k,ρ的值,当有k=4,ρ=360时不满足条件k<m,输出p的值为360.解答:解:执行程序框图,有n=6,m=4k=1,ρ=1第一次执行循环体,ρ=3满足条件k<m,第2次执行循环体,有k=2,ρ=12满足条件k<m,第3次执行循环体,有k=3,ρ=60满足条件k<m,第4次执行循环体,有k=

4、4,ρ=360不满足条件k<m,输出p的值为360.故选:B.点评:本题主要考察程序框图和算法,属于基础题.4.从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是()A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:利用组合、乘法原理及古典概型的概率计算公式即可得出.解答:解:从装有2个红球和2个黑球的口袋内任取2个球,共有=6种方法;其中恰有一个红球的方法为=4.因此恰有一个红球的概率P==.故选C.点评:熟练掌握组合、乘法原理及古典概型的概率计算公式是解题的关键.5.已知直线3x+4y﹣3=0与直

5、线6x+my+14=0行,则它们之间的距离是()A.B.C.8D.2考点:两条平行直线间的距离;直线的一般式方程与直线的平行关系.专题:计算题.分析:根据两平行直线的斜率相等,在纵轴上的截距不相等,求出m,利用两平行直线间的距离公式求出两平行直线间的距离.解答:解:∵直线3x+4y﹣3=0与直线6x+my+14=0平行,∴=≠,∴m=8,故直线6x+my+14=0即3x+4y+7=0,故两平行直线间的距离为=2,故选D.点评:本题考查两直线平行的性质,两平行直线间的距离公式的应用.6.设有直线m、n和平面α、β,下列四个命题中,正确的是(

6、)A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α考点:空间中直线与平面之间的位置关系.专题:证明题.分析:由面面平行的判定定理和线面平行的定理判断A、B、D;由面面垂直的性质定理判断C.解答:解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.点评:本题考查了线面的位置关系,主要用了面面垂直和平行的定理进行验证,属于基础题.7

7、.已知直线x+y=a与圆x2+y2=4交于A、B两点,且

8、

9、=

10、

11、,其中O为原点,则实数a的值为()A.2B.﹣2C.2或﹣2D.或﹣考点:直线和圆的方程的应用;向量的模;向量在几何中的应用.专题:计算题.分析:条件“

12、

13、=

14、

15、”是向量模的等式,通过向量的平方可得向量的数量积

16、2=

17、

18、2,•=0,可得出垂直关系,接下来,如由直线与圆的方程组成方程组求出A、B两点的坐标,势必计算很繁,故采用设而不求的方法.解答:解:由

19、

20、=

21、

22、得

23、

24、2=

25、

26、2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.点评:若非

27、零向量,,满足

28、

29、=

30、

31、,则.模的处理方法一般进行平方,转化成向量的数量积.向量是既有大小,又有方向的量,它既有代数特征,又有几何特征,通过向量可以实现代数问题与几何问题的互相转化,所以向量是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。