欢迎来到天天文库
浏览记录
ID:45357534
大小:51.80 KB
页数:3页
时间:2019-11-12
《2019-2020年高中数学北师大版选修2-2第3章《导数与函数的单调性》(第3课时)word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高中数学北师大版选修2-2第3章《导数与函数的单调性》(第3课时)word教案一、教学目标:1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的方法二、教学重难点:利用导数判断函数单调性.三、教学方法:探究归纳,讲练结合四、教学过程(一)、复习:1.函数的单调性.对于任意的两个数x1,x2∈I,且当x1<x2时,都有f(x1)<f(x2),那么函数f(x)就是区间I上的增函数.对于任意的两个数x1,x2∈I,且当x1<x2时,都有f(x1)>f(x2),那么函数f(x)就是区间I上的减函数.2.导数
2、的概念及其四则运算3、定义:一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间内0,那么函数y=f(x)在为这个区间内的增函数;如果在这个区间内0,那么函数y=f(x)在为这个区间内的减函数4、用导数求函数单调区间的步骤:①求函数f(x)的导数f′(x).②令f′(x)0解不等式,得x的范围就是递增区间.③令f′(x)0解不等式,得x的范围,就是递减区间.(二)、探究新课例1、确定函数f(x)=x2-2x+4在哪个区间内是增函数,哪个区间内是减函数.解:f′(x)=(x2-2x+4)′=2x-2.令2x-2>0,解得x>1.∴当x∈
3、(1,+∞)时,f′(x)>0,f(x)是增函数.令2x-2<0,解得x<1.∴当x∈(-∞,1)时,f′(x)<0,f(x)是减函数.例2、确定函数f(x)=2x3-6x2+7在哪个区间内是增函数,哪个区间内是减函数.解:f′(x)=(2x3-6x2+7)′=6x2-12x,令6x2-12x>0,解得x>2或x<0∴当x∈(-∞,0)时,f′(x)>0,f(x)是增函数.当x∈(2,+∞)时,f′(x)>0,f(x)是增函数.令6x2-12x<0,解得0<x<2.∴当x∈(0,2)时,f′(x)<0,f(x)是减函数.例3、证明函数f(x)
4、=在(0,+∞)上是减函数.证法一:(用以前学的方法证)任取两个数x1,x2∈(0,+∞)设x1<x2.f(x1)-f(x2)=∵x1>0,x2>0,∴x1x2>0∵x1<x2,∴x2-x1>0,∴>0∴f(x1)-f(x2)>0,即f(x1)>f(x2)∴f(x)=在(0,+∞)上是减函数.证法二:(用导数方法证)∵f′(x)=()′=(-1)·x-2=-,x>0,∴x2>0,∴-<0.∴f′(x)<0,∴f(x)=在(0,+∞)上是减函数.例4、求函数y=x2(1-x)3的单调区间.解:y′=[x2(1-x)3]′=2x(1-x)3+x2
5、·3(1-x)2·(-1)=x(1-x)2[2(1-x)-3x]=x(1-x)2·(2-5x)令x(1-x)2(2-5x)>0,解得0<x<.∴y=x2(1-x)3的单调增区间是(0,)令x(1-x)2(2-5x)<0,解得x<0或x>且x≠1.∵为拐点,∴y=x2(1-x)3的单调减区间是(-∞,0),(,+∞)例5、已知函数在区间上是增函数,求实数的取值范围.解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:;所以实数的取值范围为.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单
6、调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.(三)、小结:本节课学习了利用导数判断函数单调性.(四)、课堂练习:(五)、课后作业:1、求证:函数在区间内是减函数.证明:因为当即时,,所以函数在区间内是减函数.2、已知函数在区间上是增函数,求实数的取值范围.解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:所以实数的取值范围为。五、教后反思:
此文档下载收益归作者所有