资源描述:
《 黑龙江省哈尔滨师范大学附属中学2018-2019学年高二下学期开学考试数学(理)试题(含答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、哈师大附中2017级高二学年下学期开学考试试卷理科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线的准线方程为,则实数的值为()A.8B.-8C.D.2.下面四个条件中,使成立的充分不必要条件是()A.B.C.D.3.分别写有数字1,2,3,4,的4张卡片,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率是( )A.B.C.D.4.设A为圆周上一定点,在圆周上等可能地任取一点与A相连,则弦长超过半径的概率为()A.B.C.D.5.已知
2、命题p:∃n∈N,2n>1000,则¬p为( )A.∀n∈N,2n≤1000B.∀n∈N,2n>1000C.∃n∈N,2n≤1000D.∃n∈N,2n<10006.4位二进制数,能表示的最大的十进制数是()A.3B.4C.15D.637.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数后,输出的,那么的值为A.3B.4C.5D.68.甲乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲乙下成和棋的概率为()A.50%B.30%C.10%D.60%9.以下茎叶图记录了甲、乙两组各名学生在一次英语听力测试中的
3、成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值分别为A.2,5B.5,5C.5,8D.8,810.三对夫妻站成一排照相,则仅有一对夫妻相邻的站法总数是()A.288B.240C.144D.7211.已知双曲线:(,)的渐近线与相切,则双曲线的离心率是()A.B.C.D.12.已知直线和直线,若抛物线上的点到直线和的距离之和的最小值为2,则抛物线C的方程为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上.)13.将参加2012年7月21日北京抗洪的1000名
4、群众编号如下:0001,0002,0003,…1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…0020,从第一部分随机抽取一个号码为0015,则被抽取的第41个号码为_____________.14.若的展开式中各项系数的和为32,则该展开式中只含字母且的次数为1的项的系数为________________.15.已知抛物线:与点,过的焦点且斜率为的直线与交于两点,若,则 .16.过点作斜率为的直线与椭圆相交于,两点,若是线段的中点,则椭圆的离心率等于 .三、
5、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知曲线的极坐标方程是,在以极点为坐标原点,极轴为轴的正半轴的平面直角坐标系中,将曲线所有点的横坐标都伸长为原来的3倍,得到曲线.(1)求曲线的参数方程;(2)直线过点,倾斜角为,与曲线交于两点,求的值.18.(本小题满分12分)某种产品的广告费用支出万元与销售额万元之间有如下的对应数据:(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;其中:参考公式:,,参考数据:,(2)据此估计广告费用为万元时,所得的销售收
6、入.19.(本小题满分12分)某家庭记录了使用了节水龙头天的日用水量数据,得到频数分布表如下:(1)在答题卡上作出使用了节水龙头天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于的概率;[来源:学科网]20.(本小题满分12分)如图,已知点是轴左侧(不含轴)一点,抛物线上存在不同的两点,满足,的中点均在上.(1)设中点为,证明:垂直于轴;(2)若是半椭圆上的动点,求面积的取值范围.21.(本小题满分12分)已知椭圆的离心率为,其左顶点A在圆上.[来源:学+科+网](1)求椭圆的方程;(2)若P为椭圆
7、C上不同与点A的点,直线AP与圆O的另一个交点为Q,问:是否存在点P,使得?若存在,求出直线AP的斜率.22.(本小题满分12分)在平面直角坐标系中,椭圆的离心率为,焦距为.(1)求椭圆的方程.(2)如图,该直线交椭圆于,两点,是椭圆上的一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,,是的两条切线,切点分别为,,求的最大值,并求取得最大值时直线的斜率.哈师大附中2017级高二学年下学期开学考试文科数学答案123456789101112BABADB[来源:学§科§网Z§X§X§K]CDCCCD13.021514.11
8、5.216.17.(1)因为直线的参数方程为(为参数).所以直线的普通方程是,曲线的极坐标方程为,曲线的直角坐标方程是,依题意直线与圆相切,则,………………………5分解得或,因为,所以.(2)如图,不妨设,,则,,所以,即,时,最大值是…………10分18.(1),,……………