欢迎来到天天文库
浏览记录
ID:45169925
大小:114.00 KB
页数:10页
时间:2019-11-10
《(广西专版)八年级数学上册 第十二章 全等三角形质量评估测试卷 (新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十二章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.(3分)如图,△ABC≌△CDA,∠BAC=85°,∠B=65°,则∠CAD的度数为( )A.85° B.65°C.40°D.30°(第2题)(第3题)(第4题)(第5题)3.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62° C.42° D.76°、62°或42°都可
2、以4.(3分)如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有( )A.1个B.2个C.3个D.4个5.(3分)如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为( )A.5.5 B.4 C.4.5 D.36.(3分)如图,将两根同样的钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的
3、长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )A.SASB.ASAC.SSSD.AAS(第6题) (第7题)(第8题)(第9题)7.(3分)如图,已知CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,则图中的全等三角形共有( )A.1对B.2对C.3对D.4对8.(3分)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是( )A.15°B.20°C.25°D.30°9.(3分)如图,OA=OC,OB=OD且OA⊥OB,OC
4、⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是( )A.①②B.①②③C.①③D.②③10.(3分)如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.②③④D.①③(第10题)(第11题)(第12题)11.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BCA=∠D
5、CAC.∠BAC=∠DACD.∠B=∠D=90°12.(3分)如图,在5×5格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有( )A.5个B.6个C.7个D.8个二、填空题(共6小题,总分18分)13.(3分)如图所示的方格中,∠1+∠2+∠3=_______度.(第13题)(第14题)(第15题)14.(3分)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为_______.15.(3分)如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:
6、_______________________,使△ABC≌△FED.16.(3分)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.(第16题)(第17题)(第18题)17.(3分)如图,要测量池塘的宽度AB,在池塘外选取一点P,连接AP、BP并各自延长,使PC=PA,PD=PB,连接CD,测得CD长为25m,则池塘宽AB为________m,依据是___________.18.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5
7、cm,则DE=___________cm.三、解答题(共8小题,总分66分)19.(6分)如图,已知∠A=∠D,CO=BO,求证:△AOC≌△DOB.(第19题)20.(6分)如图,已知AF=BE,∠A=∠B,AC=BD.求证:∠F=∠E.(第20题)21.(8分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.(第21题)22.(8分)如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.(第22题)23.(8分)如图
8、,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.(第23题)24.(10分)如图,已知CA=CB,点E,F在射线CD上,满足∠BEC=∠CFA,且∠BEC+∠ECB+∠A
此文档下载收益归作者所有