欢迎来到天天文库
浏览记录
ID:45154163
大小:146.50 KB
页数:17页
时间:2019-11-10
《2019-2020年高三数学下学期第五次月考试卷 理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高三数学下学期第五次月考试卷理(含解析)一、选择题(本大题共10个小题,每小题5分共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若复数z满足3﹣i=(z+1)i,则复数z的共轭复数的虚部为()A.3B.3iC.﹣3D.﹣3i2.已知直线l1:ax+(a+1)y+1=0,l2:x+ay+2=0,则“a=﹣2”是“l1⊥l2”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.一个几何体的三视图如图,则该几何体的体积为()A.πB.C.D.4.阅读如下
2、程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A.S<8?B.S<12?C.F1D.F25.已知{an}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣76.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2B.1C.D.7.某校团委组织“共圆中国梦”知识演讲比赛活动,现有4名选手参加最后决赛,若每位选手都可以从4个备选题目中任选出一个进行演讲,则恰有一个题目没有被这4位选手选中的情况有()A.36种B.72种C.144种D.288种8.若
3、从区间(0,e)内随机取两个数,则这两个数之积不小于e的概率为()A.B.C.D.9.定义在R上的函数f(x)对任意x1、x2(x1≠x2)都有<0,且函数y=f(x﹣1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2﹣2s)≤﹣f(2t﹣t2),则当1≤s≤4时,的取值范围是()A.[﹣3,﹣)B.[﹣3,﹣]C.[﹣5,﹣)D.[﹣5,﹣]10.已知平面向量满足:,若,则的取值范围是()A.B.C.D.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号位置上.答错位置,书写不清,
4、模棱两可均不得分.11.(1+x+x2)(x﹣)6的展开式中的常数项为.12.以平面直角坐标系的原点为极点,以x轴的正半轴为极轴,建立极坐标系,则曲线(φ为参数,φ∈R)上的点到曲线ρcosθ+ρsinθ=4(ρ,θ∈R)的最短距离是.13.设函数f(x)=3sin(2x+)+1,将y=f(x)的图象向右平移φ(φ>0)个单位,使得到的图象关于y对称,则φ的最小值为.14.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.15.如图,四面体OABC中,OA,OB,
5、OC两两垂直,且OA=OB=OC=1,给出下列命题:①存在点D(点O除外),使得四面体DABC仅有3个面是直角三角形;②存在点D,使得四面体DOBC的4个面都是直角三角形;③存在唯一的点D,使得四面体DABC是正棱锥(底面是正多边形,且顶点在底面的射影是底面正多边形的中心,这样的棱锥叫做正棱锥);④存在唯一的点D,使得四面体DABC与四面体OABC的体积相等;⑤存在无数个点D,使得AD与BC垂直且相等.其中正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题(本题包括6小题,共75分.请把解题过程和正确答案写在答
6、题卷上).16.三角形ABC中,已知sin2A+sin2B+sinAsinB=sin2C,其中,角A,B,C所对的边分别为a,b,c.(Ⅰ)求角C的大小;(Ⅱ)求的取值范围.17.如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠DAB=90°AD∥BC,AD⊥侧面PAB,△PAB是等边三角形,DA=AB=2,BC=,E是线段AB的中点.(Ⅰ)求证:PE⊥CD;(Ⅱ)求PC与平面PDE所成角的正弦值.18.某电视台举办的闯关节目共有五关,只有通过五关才能获得奖金,规定前三关若有失败即结束,后两关若有失败再给一次从失败
7、的关开始继续向前闯的机会.已知某人前三关每关通过的概率都是,后两关每关通过的概率都是.(1)求该人获得奖金的概率;(2)设该人通过的关数为ξ,求随机变量ξ的分布列及数学期望.19.已知椭圆C:=1(a>b>0)过点P(1,),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F1、F2分别为椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同两点M,N,记△F1MN的内切圆的面积为S,求当S取最大值时直线l的方程,并求出最大值.20.若数列{an}的前n项和Sn是(1+x)n二项展开式中各项系数的和(n=1,2,3,…).(1)
8、求{an}的通项公式;(2)若数列{bn}满足b1=﹣1,bn+1=bn+(2n﹣1),且,求数列{cn}的通项及其前n项和Tn.(3)求证:Tn•Tn+2<Tn+12.21.设函数f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点(1)求常数b的值(2)当0≤x≤1
此文档下载收益归作者所有