2019-2020年人教版高中数学必修二教案:第一章 空间几何体复习

2019-2020年人教版高中数学必修二教案:第一章 空间几何体复习

ID:45111284

大小:195.30 KB

页数:7页

时间:2019-11-10

2019-2020年人教版高中数学必修二教案:第一章 空间几何体复习_第1页
2019-2020年人教版高中数学必修二教案:第一章 空间几何体复习_第2页
2019-2020年人教版高中数学必修二教案:第一章 空间几何体复习_第3页
2019-2020年人教版高中数学必修二教案:第一章 空间几何体复习_第4页
2019-2020年人教版高中数学必修二教案:第一章 空间几何体复习_第5页
资源描述:

《2019-2020年人教版高中数学必修二教案:第一章 空间几何体复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年人教版高中数学必修二教案:第一章空间几何体复习项目内容课题第1章空间几何体复习(共1课时)修改与创新教学目标通过总结和归纳空间几何体的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养其分类讨论的思想和提高其抽象思维能力.教学重、难点教学重点:①空间几何体的结构特征.②由三视图还原为实物图.③面积和体积的计算.教学难点:①由三视图还原为实物图.②组合体的结构特征.教学准备多媒体课件教学过程一、导入新课:我们生活的世界,存在各式各样的物体,它们大多是由具有柱、锥、台、球等形状的物体组成的.认识和把握柱体、锥体

2、、台体、球体的几何结构特征,是我们认识空间几何体的基础.教师引出课题.二、讲授新课:提出问题1.本章接触到的空间几何体是单一的柱体、锥体、台体、球体,或者是它们的简单组合体.你能说出较复杂的几何体(如你身边的建筑物)的结构吗?2.对于空间几何体,可以有不同的分类标准.你能从不同的方面认识柱、锥、台、球等空间几何体吗?你分类的依据是什么?3.为了研究空间几何体,我们需要在平面上画出空间几何体.空间几何体有哪些不同的表现形式?4.利用斜二测画法,我们可以画出空间几何体的直观图.你能回顾用斜二测画法画空间几何体的基本步骤吗?5.计算空间几何体的表面积和体积时,要充分利用平面几何知识,把空

3、间图形转化为平面图形,特别是柱、锥、台体侧面展开图.请同学们回顾柱、锥、台体的侧面展开图是什么?如何计算它们的表面积?柱、锥、台体的体积之间是否存在一定的关系?6.球是比较特殊的空间几何体,它的表面积公式和体积公式是什么?7.画出本章的知识结构图.活动:让学生自己回顾所学知识或结合课本,重新对知识整合,对没有思路的学生,教师可以提示按课本的章节标题来分类.对于画知识结构图,学生可能比较陌生,教师可以引导学生先画一个本班班委的结构图或学校各个处室的关系结构图,待学生了解了简单的画法后,再画本章的知识结构图.讨论结果:1.略.以实际情况来确定.2.按围成几何体的面是否是平面分为:按底面

4、的情况分为:3.空间几何体有两种表现形式:三视图和直观图.4.略.5.结构特征棱柱棱锥棱台圆柱圆锥圆台球侧面展开图平行四边形由三角形拼接成由梯形拼接成矩形扇形扇环不可展开各个面的面积之和就是表面积表面积的计算方法柱、锥、台体的体积之间的关系:柱体和锥体可以看作由台体变化得到.柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体.柱体和锥体的体积公式都可以看作由台体的体积公式演变而来.6.半径为R的球,其表面积为S表=4πR2,体积V=.7.本章的知识结构图如图1所示.图1应用示例例1下列几何体是台体的是()图2活动:学生回顾台体的结构特征.分析:A中的“侧棱”

5、没有相交于一点,所以A不是台体;B中的几何体没有两个平行的面,所以B不是台体;很明显C是棱锥,D是台体.答案:D点评:本题主要考查台体的结构特征.像这样的概念辨析题,主要是依靠对简单几何体的结构特征的准确把握.变式训练1.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥分析:因为梯形的两底平行,故另一底旋转形成了圆柱面,而两条腰由于与旋转轴相交,故旋转形成了锥体,因此得到一个圆柱、两个圆锥.答案:D2.下列三视图表示的几何体是()图3A.圆台B.棱锥C.圆锥D.圆柱分析:

6、由于俯视图是两个同心圆,则这个几何体是旋转体,又侧视图和正视图均是等腰梯形,所以该几何体是圆台.答案:A3.下列有关棱柱的说法:①棱柱的所有的棱长都相等;②棱柱的所有的侧面都是长方形或正方形;③棱柱的侧面的个数与底面的边数相等;④棱柱的上、下底面形状、大小相同.正确的有______________.分析:棱柱的所有面都是平的,所有侧棱长都相等,但底面上的棱与侧棱不一定相等,其侧面都是平行四边形,只有当棱柱是直棱柱时,侧面才是矩形,侧面个数与底面边数相等,棱柱的上、下底面是全等的多边形,由此可知③④正确.答案:③④例2(xx福建高考,理5)已知正方体外接球的体积是,那么正方体的棱长等

7、于()A.B.C.D.活动:学生思考交流正方体和球的结构特征,教师可以借助于信息技术,展示图形.分析:过正方体的相对侧棱作球的截面,可得正方体的对角线是球的直径.设正方体的棱长为a,球的半径为R,则有2R=,所以R=,则,解得a=.答案:D点评:球与其他几何体的简单组合体问题,通常借助于球的截面来明确构成组合体的几何体的结构特征及其联系,本题利用正方体外接球的直径是正方体的对角线这一隐含条件使得问题顺利获解.空间几何体的表面积和体积问题是高考考查的热点之一.主要以选择

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。