欢迎来到天天文库
浏览记录
ID:44956972
大小:31.00 KB
页数:8页
时间:2019-11-06
《数据挖掘技术在企业客户关系管理(CRM)中的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数据挖掘技术在企业客户关系管理(CRM)中的应用 引言 随着Internet的飞速发展,网络已经成了一个全球性的巨大的信息服务中心,大量信息在给人们带来方便的同时,也带来很多问题:一是信息过量,二是信息真假难辨,三是信息安全难以保证,四是信息形式不一致。人们开始考虑怎样才能不被信息淹没,而是从海量信息中发现有用的知识,充分提高信息的利用率,面对这种迫切需求,数据挖掘技术应运而生。 1数据挖掘的概念 从技术上定义,数据挖掘(DataMining,简称为DM)是一种半自动地从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取出隐含在
2、其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘从数据中提取人们感兴趣的可用信息和知识,并将提取出来的信息和知识表示成概念、规则、规律和模式等便于人们理解与利用的形式。 并且,数据挖掘是一个多学科交叉领域,它涉及到数据库技术、人工智能、机器学习、神经网络、统计学、模式识别、知识库系统、知识获取、信息提取、高性能计算和数据可视化等学科。根据挖掘任务,可分为分类/预测、数据总结、聚类、关联规则挖掘、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等。其挖掘对象有关系数据库、异质数据库、遗产数据库、空间数据库、时态数据库
3、、文本数据源、多媒体数据库、面向对象数据库以及基因库等。其应用领域包括商业、科学研究、天文学、保险业、电信业、教育、DNA分析等。 如果从企业角度说,数据挖掘是一种新的客户信息处理技术,其主要特点是对企业数据库中的大量业务数据进行抽取、转换、分析和其他模式处理,从中提取辅助企业决策的关键性数据。因此,数据挖掘也可被描述为:是提取有用信息的数据产生过程,是从大量数据中挖掘出隐含的、先前未知的、对决策有潜在价值的知识和规则,并能够根据已有的信息对未发生行为做出结果预测,为企业经营决策、市场策划提供依据的过程。 2数据挖掘在企业客户关系管理中
4、应用的必要性和作用 目前一个企业是否有竞争力已不再完全取决于它的产品和生产运作效率,而在很大程度上取决于它是否建立和保持良好的客户关系。过去由于技术的限制,企业信息系统的开放性不足,因此全方位了解顾客,把握客户的特征与需求只能是一种理想。而在网络科技的快速发展条件下,加上日益成熟的数据仓库和数据挖掘技术,使得企业能更有效地掌握客户的行为及需求。如果企业把利润作为自己的目标,客户关系管理则是到达这个目标的最有用的工具,而数据挖掘则是这个工具的最佳引擎。 数据挖掘是一个迅速发展的学科,而且是面向应用的。数据挖掘应用于CRM会提高企业的商业智
5、能。数据挖掘与CRM的结合将是全方面的,即销售、营销和客户服务都可以从数据挖掘中获得决策支持。DataMiners的发起人GordonS.Linoff认为:“数据挖掘通过整合企业的数据,帮助将正确的信息传到每一个客户。数据挖掘是CRM的必备组件之一”。 随着信息技术的迅速发展,特别是数据库技术和计算机网络的广泛应用,企业拥有的数据量急剧增大。在大量的数据与信息中,蕴藏着企业运作的利弊得失,如果能够对这种海量的数据与信息进行快速有效的深入分析和处理,就能从中找出规律和模式,获取所需知识,帮助企业更好地进行企业运筹决策。 在对CRM的广泛理
6、解中,最简单的含义就是:管理所有的与客户的相互作用。在实践中,这需要在客户关系的各个阶段使用与客户相关的信息来预测与客户的相互作用。我们将客户关系的各个阶段定义为客户生命周期。客户生命周期包括四个阶段:一是获得客户,二是提高客户的价值,三是保持上等效益客户,四是防止客户流失。 数据挖掘在客户生命周期不同阶段中的具体应用。 2.1获得新客户 企业的发展和壮大需要不断的获得新的客户。新的客户包括以前没有听过你产品的人,以前不需要你产品的人,以及以前你的竞争对手的客户。无论你希望得到的是哪一类客户,数据挖掘都能够帮助你辨别这些潜在客户群,并
7、提高市场活动的响应率。 数据挖掘可以帮助企业利用现有的客户记录和资料找出客户的一些共同特征,由此深入了解客户,还可以通过分类或聚类分析对客户进行群分后,再由模式分析预测哪些人可能成为其客户,以帮助销售人员找到正确的对象。例如一个计算机产品直销商利用现有的客户邮件地址数据库给潜在客户发送用于促销的新的计算机产品宣传册和将要开始的产品降价信息。不加区分的给每名客户都发送促销宣传册显然是一种很大的浪费,而有针对性的给有最大购买可能的顾客发送产品广告,才是一种高效节俭的营销策略。这时可以采用分类方法中常用的决策树归纳方法对数据库中的一部分数据(训
8、练数据)进行分类学习得出数据集的决策树模型,如果模型的准确率经测试被认为是可以接受的,那么就可以使用这一模型建立的规则对数据库进行分类预测了。 2.2使用交叉销售提高现有客户的
此文档下载收益归作者所有