重庆中学考试抛物线25题新颖训练精彩试题(含详细问题详解解析汇报)

重庆中学考试抛物线25题新颖训练精彩试题(含详细问题详解解析汇报)

ID:44944729

大小:449.12 KB

页数:17页

时间:2019-11-05

重庆中学考试抛物线25题新颖训练精彩试题(含详细问题详解解析汇报)_第1页
重庆中学考试抛物线25题新颖训练精彩试题(含详细问题详解解析汇报)_第2页
重庆中学考试抛物线25题新颖训练精彩试题(含详细问题详解解析汇报)_第3页
重庆中学考试抛物线25题新颖训练精彩试题(含详细问题详解解析汇报)_第4页
重庆中学考试抛物线25题新颖训练精彩试题(含详细问题详解解析汇报)_第5页
资源描述:

《重庆中学考试抛物线25题新颖训练精彩试题(含详细问题详解解析汇报)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、一.解答题(共7小题)1.(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.考点:二次函数综合题.4946047分析:(1)先由直线AB的解析式为y=x+3,求出它与x轴的交点A、与y

2、轴的交点B的坐标,再将A、B两点的坐标代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)设第三象限内的点F的坐标为(m,﹣m2﹣2m+3),运用配方法求出抛物线的对称轴及顶点D的坐标,再设抛物线的对称轴与x轴交于点G,连接FG,根据S△AEF=S△AEG+S△AFG﹣S△EFG=3,列出关于m的方程,解方程求出m的值,进而得出点F的坐标;(3)设P点坐标为(﹣1,n).先由B、C两点坐标,运用勾股定理求出BC2=10,再分三种情况进行讨论:①∠PBC=90°,先由勾股定理得出PB2+BC2=PC2,据此列出关于n的方程,求出n的值,再计算出PD的长度,然后根据时间=路程÷

3、速度,即可求出此时对应的t值;②∠BPC=90°,同①可求出对应的t值;③∠BCP=90°,同①可求出对应的t值.解答:解:(1)∵y=x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=﹣3,即A点坐标为(﹣3,0),当x=0时,y=3,即B点坐标为(0,3),将A(﹣3,0),B(0,3)代入y=﹣x2+bx+c,得,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)如图1,设第三象限内的点F的坐标为(m,﹣m2﹣2m+3),则m<0,﹣m2﹣2m+3<0.∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴对称轴为直线x=﹣1,顶点D的坐标为(﹣1,4),设抛物线的对称轴与x轴交于点G

4、,连接FG,则G(﹣1,0),AG=2.∵直线AB的解析式为y=x+3,∴当x=﹣1时,y=﹣1+3=2,∴E点坐标为(﹣1,2).∵S△AEF=S△AEG+S△AFG﹣S△EFG=×2×2+×2×(m2+2m﹣3)﹣×2×(﹣1﹣m)=m2+3m,∴以A、E、F为顶点的三角形面积为3时,m2+3m=3,解得m1=,m2=(舍去),当m=时,﹣m2﹣2m+3=﹣m2﹣3m+m+3=﹣3+m+3=m=,∴点F的坐标为(,);(3)设P点坐标为(﹣1,n).∵B(0,3),C(1,0),∴BC2=12+32=10.分三种情况:①如图2,如果∠PBC=90°,那么PB2+BC2=PC2,即(0+1

5、)2+(n﹣3)2+10=(1+1)2+(n﹣0)2,化简整理得6n=16,解得n=,∴P点坐标为(﹣1,),∵顶点D的坐标为(﹣1,4),∴PD=4﹣=,∵点P的速度为每秒1个单位长度,∴t1=;②如图3,如果∠BPC=90°,那么PB2+PC2=BC2,即(0+1)2+(n﹣3)2+(1+1)2+(n﹣0)2=10,化简整理得n2﹣3n+2=0,解得n=2或1,∴P点坐标为(﹣1,2)或(﹣1,1),∵顶点D的坐标为(﹣1,4),∴PD=4﹣2=2或PD=4﹣1=3,∵点P的速度为每秒1个单位长度,∴t2=2,t3=3;③如图4,如果∠BCP=90°,那么BC2+PC2=PB2,即10+

6、(1+1)2+(n﹣0)2=(0+1)2+(n﹣3)2,化简整理得6n=﹣4,解得n=﹣,∴P点坐标为(﹣1,﹣),∵顶点D的坐标为(﹣1,4),∴PD=4+=,∵点P的速度为每秒1个单位长度,∴t4=;综上可知,当t为秒或2秒或3秒或秒时,以P、B、C为顶点的三角形是直角三角形.点评:本题考查了二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,函数图象上点的坐标特征,抛物线的顶点坐标和三角形的面积求法,直角三角形的性质,勾股定理.综合性较强,难度适中.(2)中将△AEF的面积表示成S△AEG+S△AFG﹣S△EFG,是解题的关键;(3)中由于没有明确哪一个角是直角,所

7、以每一个点都可能是直角顶点,进行分类讨论是解题的关键. 2.如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过点B和点C,点A是抛物线与x轴的另一个交点.(1)求抛物线的解析式和顶点坐标;(2)若点Q在抛物线的对称轴上,能使△QAC的周长最小,请求出Q点的坐标;(3)在直线BC上是否存在一点P,且s△PAC:S△PAB=1:3?若存在,求P点的坐标;若不存在,请说明理由.考点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。