资源描述:
《2019_2020学年高中数学第2章平面向量章末复习课学案北师大版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2章平面向量平面向量的线性运算【例1】 (1)已知向量a=(2,1),b=(-3,4),则2a-b的结果是( )A.(7,-2) B.(1,-2)C.(1,-3)D.(7,2)(2)设D为△ABC所在平面内一点,则=3,则( )A.=-+B.=-C.=-D.=-+(1)A (2)D [(1)∵a=(2,1),b=(-3,4),∴2a-b=2(2,1)-(-3,4)=(4,2)-(-3,4)=(4+3,2-4)=(7,-2),故选A.(2)∵=3,∴-=3(-),∴2=3-,∴=-.]向量线性运算的基本
2、原则和求解策略(1)基本原则:向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.(2)求解策略:①向量是一个有“形”的几何量,因此在进行向量线性运算时,一定要结合图形,这是研究平面向量的重要方法与技巧.②字符表示线性运算的常用技巧:,首尾相接用加法的三角形法则,如+=;共起点两个向量作差用减法的几何意义,如-=.③平行向量(共线向量)、相等向量与相反向量、单位向量等,理解向量的有关概念并进行恰当地应用.④
3、注意常见结论的应用.如△ABC中,点D是BC的中点,则+=.1.(1)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=________.(2)在△ABC中,点M,N满足=2,=.若=x+y,则x=________;y=________.(1) (2) - [(1)因为λa+b与a+2b平行,所以λa+b=t(a+2b),即λa+b=ta+2tb,所以解得(2)因为=2,所以=.因为=,所以=(+),所以=-=(+)-=-.又=x+y,所以x=,y=-.]平面向量的数量积【例2】 (1)设单位向量m=
4、(x,y),b=(2,-1).若m⊥b,则
5、x+2y
6、=________.(2)已知两个单位向量a,b的夹角θ为60°,c=ta+(1-t)b,若b·c=0,则t=________.(1) (2)2 [(1)因为单位向量m=(x,y),则x2+y2=1.①若m⊥b,则m·b=0,即2x-y=0.②由①②解得x2=,所以
7、x
8、=,
9、x+2y
10、=5
11、x
12、=.(2)法一:因为b·c=0,所以b·[ta+(1-t)b]=0,即ta·b+(1-t)b2=0.又因为
13、a
14、=
15、b
16、=1,θ=60°,所以t+1-t=0,所以
17、t=2.法二:由t+(1-t)=1知向量a,b,c的终点A、B、C共线,在平面直角坐标系中设a=(1,0),b=,则c=.把a、b、c的坐标代入c=ta+(1-t)b,得t=2.]向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=
18、a
19、
20、b
21、cos〈a,b〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.运用两向量的数量积解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.2.已知两个单位向量e1,e
22、2的夹角为,若向量b1=e1-2e2,b2=3e1+4e2,则b1·b2=________.-6 [b1·b2=(e1-2e2)·(3e1+4e2)=3e-2e1·e2-8e=3-2×1×1×-8=-6.]向量的夹角及垂直问题[探究问题]1.怎样求两个不共线向量的夹角?[提示] 对两个不共线向量a,b,通过平移使它们的起点相同,这两个有公共起点的向量的夹角就是a与b的夹角.2.两向量所成的角与两直线所成角的区别是什么?[提示] 两向量所成的角,不一定是两向量所在的直线所成的角,因为前者的取值范围为[0°,18
23、0°],而后者的取值范围为[0°,90°].这一点经常容易混淆,一定要注意.3.用数量积判断两向量夹角时应注意什么?[提示] 当θ=0°时,有a·b>0,此时a与b共线且同向,即a·b>0,不能说向量的夹角一定为锐角,同理当θ=180°时,有a·b<0,但a·b<0,不能说向量的夹角一定为钝角.【例3】 已知三个点A(2,1),B(3,2),D(-1,4).(1)求证:AB⊥AD;(2)若四边形ABCD为矩形,求点C的坐标以及矩形ABCD两对角线所夹锐角的余弦值.[思路探究] (1)利用·=0即可;(2)利用
24、夹角公式cosθ=求解.[解] (1)证明:∵A(2,1),B(3,2),D(-1,4),∴=(1,1),=(-3,3).∵·=1×(-3)+1×3=0,∴⊥,即AB⊥AD.(2)∵⊥,四边形ABCD为矩形,∴=.设C点坐标为(x,y),则=(x+1,y-4),∴解得∴点C坐标为(0,5).从而=(-2,4),=(-4,2),且
25、
26、=2,
27、
28、=2,·=8+8=16,设与的夹角为θ,则
29、cosθ
30、==