2019_2020学年高中数学第2章基本初等函数(Ⅰ)2.3幂函数学案新人教A版必修1

2019_2020学年高中数学第2章基本初等函数(Ⅰ)2.3幂函数学案新人教A版必修1

ID:44938978

大小:360.96 KB

页数:7页

时间:2019-11-05

2019_2020学年高中数学第2章基本初等函数(Ⅰ)2.3幂函数学案新人教A版必修1_第1页
2019_2020学年高中数学第2章基本初等函数(Ⅰ)2.3幂函数学案新人教A版必修1_第2页
2019_2020学年高中数学第2章基本初等函数(Ⅰ)2.3幂函数学案新人教A版必修1_第3页
2019_2020学年高中数学第2章基本初等函数(Ⅰ)2.3幂函数学案新人教A版必修1_第4页
2019_2020学年高中数学第2章基本初等函数(Ⅰ)2.3幂函数学案新人教A版必修1_第5页
资源描述:

《2019_2020学年高中数学第2章基本初等函数(Ⅰ)2.3幂函数学案新人教A版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3 幂函数学习目标核心素养1.了解幂函数的概念,会求幂函数的解析式.(重点、易混点)2.结合幂函数y=x,y=x2,y=x3,y=,y=x的图象,掌握它们的性质.(重点、难点)3.能利用幂函数的单调性比较指数幂的大小.(重点)1.结合幂函数的图象,培养直观想象的数学素养.2.借助幂函数的性质,培养逻辑推理的数学素养.1.幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.思考:幂函数与指数函数的自变量有何区别?[提示] 幂函数是形如y=xα(α∈R),自变量在底数上,而指数函数是形如y=ax(a>0且a≠1),自变量在指数上.2.幂函数

2、的图象在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=x,y=x-1的图象如图所示:3.幂函数的性质y=xy=x2y=x3y=xy=x-1定义域RRR[0,+∞){x

3、x≠0}值域R[0,+∞)R[0,+∞){y

4、y≠0}奇偶性奇偶奇非奇非偶奇单调性增函数x∈[0,+∞)时,增函数x∈(-∞,0]时,减函数增函数增函数x∈(0,+∞)时,减函数x∈(-∞,0)时,减函数1.下列函数中不是幂函数的是(  )A.y=     B.y=x3C.y=3xD.y=x-1C [只有y=3x不符合幂函数y=xα的形式,故选C.]2.已知f(x)=(m+1

5、)x是幂函数,则m=(  )A.2B.1C.3D.0D [由题意可知m+1=1,即m=0,∴f(x)=x2.]3.已知幂函数f(x)=xα的图象过点,则f(4)=________. [由f(2)=可知2α=,即α=-,∴f(4)=4=.]幂函数的概念【例1】 已知y=(m2+2m-2)xm2-1+2n-3是幂函数,求m,n的值.[解] 由题意得解得所以m=-3,n=.判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1

6、.1.(1)在函数y=,y=2x2,y=x2+x,y=1中,幂函数的个数为(  )A.0       B.1C.2D.3(2)若函数f(x)是幂函数,且满足f(4)=3f(2),则f的值等于________.(1)B (2) [(1)∵y==x-2,∴是幂函数;y=2x2由于出现系数2,因此不是幂函数;y=x2+x是两项和的形式,不是幂函数;y=1=x0(x≠0),可以看出,常函数y=1的图象比幂函数y=x0的图象多了一个点(0,1),所以常函数y=1不是幂函数.(2)设f(x)=xα,∵f(4)=3f(2),∴4α=3×2α,解得α=log23,∴f==.

7、]幂函数的图象及应用【例2】 点(,2)与点分别在幂函数f(x),g(x)的图象上,问当x为何值时,有:(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)g(x);(2)当x=1时,f(x)=g(x);(3)当x∈(0,1)时,f(x)

8、相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=x或y=x3)来判断.2.(1)若四个幂函数y=xa,y=xb,y=xc,y=xd在同一坐标系中的图象如图,则a,b,c,d的大小关系是(  )A.d>c>b>aB.a>b>c>dC.d>c>a>bD.a>b>d>c(2)函数y=x-1的图象关于x轴对称的图象大致是(  )A    B     C    D(1)B 

9、(2)B [(1)令a=2,b=,c=-,d=-1,正好和题目所给的形式相符合.在第一象限内,x=1的右侧部分的图象,图象由下至上,幂指数增大,所以a>b>c>d.故选B.(2)y=x的图象位于第一象限且为增函数,所以函数图象是上升的,函数y=x-1的图象可看作由y=x的图象向下平移一个单位得到的(如选项A中的图所示),将y=x-1的图象关于x轴对称后即为选项B.]幂函数性质的综合应用[探究问题]1.幂函数y=xα在(0,+∞)上的单调性与α有什么关系?提示:当α>0时,幂函数y=xα在(0,+∞)上单调递增;当α<0时,幂函数y=xα在(0,+∞)上单调递

10、减.2.23.1和23.2可以看作哪一个函数的两个函

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。