江西逝江市高中数学第二章概率6正态分布教案

江西逝江市高中数学第二章概率6正态分布教案

ID:44894858

大小:125.50 KB

页数:5页

时间:2019-11-01

江西逝江市高中数学第二章概率6正态分布教案_第1页
江西逝江市高中数学第二章概率6正态分布教案_第2页
江西逝江市高中数学第二章概率6正态分布教案_第3页
江西逝江市高中数学第二章概率6正态分布教案_第4页
江西逝江市高中数学第二章概率6正态分布教案_第5页
资源描述:

《江西逝江市高中数学第二章概率6正态分布教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、6正态分布一、教学目标:1、知识与技能:了解连续性随机变量的概念以及连续性随机变量的分布密度函数;掌握正态分布在实际生活中的意义和作用。2、过程与方法:通过实例认识正态分布曲线的特点及曲线所表示的意义;结合正态曲线,加深对正态密度函数的理解。3、情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。二、教学重点:正态分布曲线的性质;教学难点:简单正态分布曲线性质的应用;三、教学方法:讨论交流,探析归纳四、教学过程(一)、复习回顾:1、若离散型随机变量X的分布列为X............P............则称EX=为随机变量X的均值,它反映了离散型随机变量取值的;2、如果

2、X是一个随机变量,那么把叫作随机变量X的方差,记为、DX,DX的算数平方根叫作随机变量X的         ,一个随机变量的方差于标准差都反映随机变量的取值        ,其中标准差与随机变量本身有          ,DX=            =          3、超几何分布的数学期望EX=      4、二项分布的数学期望EX=       ,DX=        ;5、设是一个离散型随机变量,其分布列如下表-101P1-2q求q的值,并求E、E(二)、学生阅读课本P63-65页,教师设问,师生共同归纳1、随机变量的值可以取         ,这样的随机变量称为连续性随机变量

3、;52、函数的图像称为正态分布密度曲线,简称    ;正态分布完全由参数与确定,常记做      ,如果随机变量X服从正态分布,记做        ,则X的均值EX=   ,DX=     ;3、若X则有                  (三)问题探讨 【问题1】请阅读课本回答问题:什么是正态曲线,正态分布?总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值

4、的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:式中的实数、是参数,分别表示总体的平均数与标准差,的图象为正态分布密度曲线,简称正态曲线.5一般地,如果对于任何实数,随机变量X满足,则称X的分布为正态分布.正态分布完全由参数和确定,因此正态分布常记作.如果随机变量X服从正态分布,则记为X~。【问题2】请根据课本上正态曲线,说一说正态曲线有哪些性质?1、正态分布)是由均值μ和标准差σ唯一决定的分布,通过固定其中一个值,讨论均值与标准差对于正态曲线

5、的影响.2、通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称正态曲线的作图,书中没有做要求,教师也不必补上讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质。3、正态曲线的性质:(1)曲线在x轴的上方,与x轴不相交。(2)曲线关于直线x=μ对称。(3)当x=μ时,曲线位于最高点。(4)当x<μ时,曲线上升(增函数);当x>μ时,曲线下降(减函数)并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近。(5)μ一定时,曲线的形状由σ确定。σ越大,曲线越“矮胖”,总体分布越分散;σ

6、越小.曲线越“瘦高”.总体分布越集中。五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学。54、标准正态曲线:当μ=0、σ=l时,正态总体称为标准正态总体,其相应的函数表示式是,(-∞<x<+∞)其相应的曲线称为标准正态曲线。标准正态总体N(0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题5、对于正态总体取值的概率:在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7%因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,

7、而忽略其中很小的一部分(三)例题探析:例1、给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ(1)(2)(3)【答案:(1)0,1;(2)1,2;(3)-1,0.5】例2、某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为,求总体落入区间(-1.2,0.2)之间的概率。解:正态分布的概率密度函数是,它是偶函数,说明μ=0,的最大值为=,所以σ=1,这个正态分布就是标准正态分布。5(四)、巩固练习:练习册

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。