江西逝江市高中数学第二章概率4二项分布1教案

江西逝江市高中数学第二章概率4二项分布1教案

ID:44894851

大小:114.00 KB

页数:3页

时间:2019-11-01

江西逝江市高中数学第二章概率4二项分布1教案_第1页
江西逝江市高中数学第二章概率4二项分布1教案_第2页
江西逝江市高中数学第二章概率4二项分布1教案_第3页
资源描述:

《江西逝江市高中数学第二章概率4二项分布1教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、4二项分布一、教学目标:1、知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。2、过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。二、教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。三、教学方法:讨论交流,探析归纳四、教学过程(一)、复习引入:1.已知事件发生条

2、件下事件发生的概率称为事件关于事件的条件概率,记作.2.对任意事件和,若,则“在事件发生的条件下的条件概率”,记作P(A

3、B),定义为3.事件发生与否对事件发生的概率没有影响,即.称与独立(二)、探析新课:1独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率.它是展开式的第项3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试

4、验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k=0,1,2,…,n,).于是得到随机变量ξ的概率分布如下:ξ01…k…nP……3由于恰好是二项展开式中的各项的值,所以称这样的随机变量ξ服从二项分布(binomialdistribution),记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).例1.某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少

5、有8次击中目标的概率.(结果保留两个有效数字.)解:设X为击中目标的次数,则X~B(10,0.8).(1)在10次射击中,恰有8次击中目标的概率为P(X=8)=.(2)在10次射击中,至少有8次击中目标的概率为P(X≥8)=P(X=8)+P(X=9)+P(X=10).例2.某气象站天气预报的准确率为,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件.预报5次相当于5次独立重复试验,根据次独立重复试验中某事件恰

6、好发生次的概率计算公式,5次预报中恰有4次准确的概率答:5次预报中恰有4次准确的概率约为0.41.例3.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件=“1小时内,1台机器需要人照管”3,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率,1小时内5台机床中恰有1台需要工人照管的概率,所以1小时内5台机床中至少2台需要工人照管的概率为。答:1小时内5台机床中至少2台需要工

7、人照管的概率约为.点评:“至多”,“至少”问题往往考虑逆向思维法例4.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击次记事件=“射击一次,击中目标”,则.∵射击次相当于次独立重复试验,∴事件至少发生1次的概率为.由题意,令,∴,∴,∴至少取5.答:要使至少命中1次的概率不小于0.75,至少应射击5次(三)、课堂小结:1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件

8、是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生。2.如果1次试验中某事件发生的概率是,那么次独立重复试验中这个事件恰好发生次的概率为对于此式可以这么理解:由于1次试验中事件要么发生,要么不发生,所以在次独立重复试验中恰好发生次,则在另外的次中没有发生,即发生,由,所以上面的公式恰为展开式中的第项,可见排列组合、二项式定理及概率间存在着密切的联系。(四)、课堂练习:课本第51页练习(五)、课后作业:课本第56页习题2-4A组中1、3、43

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。