欢迎来到天天文库
浏览记录
ID:44865694
大小:272.12 KB
页数:10页
时间:2019-10-31
《2019_2020学年高中数学第1章导数及其应用阶段复习课学案苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第1章导数及其应用第一课 导数及其应用导数的几何意义及其应用【例1】 已知曲线y=x3+.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[解] (1)∵P(2,4)在曲线y=x3+上,且y′=x2,∴在点P(2,4)处的切线的斜率k=y′
2、x=2=4.∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=x3+与过点P(2,4)的切线相切于点A,则切线的斜率k=y′
3、x=x0=x.∴切线方程为y-=x(x-x0),即y=x·x-x+
4、.∵点P(2,4)在切线上,∴4=2x-x+,即x-3x+4=0,∴x+x-4x+4=0.∴x(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1或x0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.(3)设切点为(x0,y0),则切线的斜率k=x=4,∴x0=±2.∴切点为(2,4)或.∴斜率为4的曲线的切线方程为y-4=4(x-2)和y+=4(x+2),即4x-y-4=0和12x-3y+20=0.利用导数的几何意义解决切线问题的两种情况(1)若已知点是切点,则在该点处的切线斜率就是该点
5、处的导数.(2)如果已知点不是切点,则应先求出切点,再借助两点连线的斜率公式进行求解.注意:曲线与直线相切并不一定只有一个公共点,例如,y=x3在(1,1)处的切线l与y=x3的图象还有一个交点(-2,-8).1.(1)曲线y=xex-1在点(1,1)处切线的斜率等于________.(2)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是________.(填序号)(1)2 (2)② [(1)y′=ex-1+xex-1=(x+1)ex-1,故曲线在点(1,1)处的切线斜率为y′=2.(2
6、)从导函数的图象可以看出,导函数值先增大后减小,x=0时最大,所以函数f(x)的图象的变化率也先增大后减小,在x=0时变化率最大.①中,在x=0时变化率最小,故错误;③中,变化率是越来越大的,故错误;④中,变化率是越来越小的,故错误;②正确.]函数的单调性与导数【例2】 已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)内单调递减?若存在,求出a的取值范围;若不存在,请说明理由.[思路探究] 研究函数的单调性可通过判断导数的符号来解决.因为涉及参数a,所
7、以要分类讨论.[解] (1)由已知,得f′(x)=3x2-a.因为f(x)在(-∞,+∞)上单调递增,所以f′(x)=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.因为3x2≥0,所以只需a≤0.又因为当a=0时,f′(x)=3x2≥0,f(x)=x3-1在R上单调递增,所以a≤0.故实数a的取值范围是a≤0.(2)由f′(x)=3x2-a≤0在(-1,1)内恒成立,得a≥3x2在x∈(-1,1)内恒成立.因为-18、,f′(x)<0,即f(x)在(-1,1)上单调递减,所以a≥3.故存在实数a≥3,使f(x)在(-1,1)内单调递减.求函数的单调区间的方法步骤(1)确定函数f(x)的定义域.(2)计算函数f(x)的导数f′(x).(3)解不等式f′(x)>0,得到函数f(x)的递增区间;解不等式f′(x)<0,得到函数f(x)的递减区间.注意:求函数单调区间一定要先确定函数定义域,往往因忽视函数定义域而导致错误.2.设函数f(x)=alnx+(a≠0),讨论函数f(x)的单调性.[解] 函数f(x)的定义域为(0,+∞).f′(x)=+=.当a≥0时,9、f′(x)>0,函数f(x)在(0,+∞)上单调递增.当a<0时,令g(x)=ax2+(2a+2)x+a,由于Δ=(2a+2)2-4a2=4(2a+1),①当a=-时,Δ=0,f′(x)=≤0,函数f(x)在(0,+∞)上单调递减.②当a<-时,Δ<0,g(x)<0,f′(x)<0,函数f(x)在(0,+∞)上单调递减.③当-<a<0时,Δ>0.设x1,x2(x1<x2)是函数g(x)的两个零点,则x1=,x2=.因为x1==>0,所以,x∈(0,x1)时,g(x)<0,f′(x)<0,函数f(x)单调递减,x∈(x1,x2)时,g(x)>10、0,f′(x)>0,函数f(x)单调递增,x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.综上可得,当a≥0时,函数f(x)在(0,+∞)上单调递增;当
8、,f′(x)<0,即f(x)在(-1,1)上单调递减,所以a≥3.故存在实数a≥3,使f(x)在(-1,1)内单调递减.求函数的单调区间的方法步骤(1)确定函数f(x)的定义域.(2)计算函数f(x)的导数f′(x).(3)解不等式f′(x)>0,得到函数f(x)的递增区间;解不等式f′(x)<0,得到函数f(x)的递减区间.注意:求函数单调区间一定要先确定函数定义域,往往因忽视函数定义域而导致错误.2.设函数f(x)=alnx+(a≠0),讨论函数f(x)的单调性.[解] 函数f(x)的定义域为(0,+∞).f′(x)=+=.当a≥0时,
9、f′(x)>0,函数f(x)在(0,+∞)上单调递增.当a<0时,令g(x)=ax2+(2a+2)x+a,由于Δ=(2a+2)2-4a2=4(2a+1),①当a=-时,Δ=0,f′(x)=≤0,函数f(x)在(0,+∞)上单调递减.②当a<-时,Δ<0,g(x)<0,f′(x)<0,函数f(x)在(0,+∞)上单调递减.③当-<a<0时,Δ>0.设x1,x2(x1<x2)是函数g(x)的两个零点,则x1=,x2=.因为x1==>0,所以,x∈(0,x1)时,g(x)<0,f′(x)<0,函数f(x)单调递减,x∈(x1,x2)时,g(x)>
10、0,f′(x)>0,函数f(x)单调递增,x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.综上可得,当a≥0时,函数f(x)在(0,+∞)上单调递增;当
此文档下载收益归作者所有