黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)

黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)

ID:44842606

大小:771.94 KB

页数:20页

时间:2019-10-30

黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)_第1页
黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)_第2页
黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)_第3页
黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)_第4页
黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)_第5页
资源描述:

《黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、黑龙江省鹤岗市第一中学2018-2019学年高二数学下学期第二次月考试题理(含解析)1.已知位学生得某次数学测试成绩得茎叶图如图,则下列说法正确的是()A.众数为7B.极差为19C.中位数为64.5D.平均数为64【答案】C【解析】【分析】根据茎叶图中的数据求得这组数据的众数、极差、中位数和平均数.【详解】根据茎叶图中的数据知,这组数据的众数为67,A错误;极差是75﹣57=18,B错误;中位数是64.5,C正确;平均数为60(﹣3﹣1+1+2+7+7+12+15)=65,D错误.故选:C.【点睛】本题考查了利

2、用茎叶图求众数、极差、中位数和平均数的应用问题,是基础题.2.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了次试验,得到组数据:,由最小二乘法求得回归直线方程为.若已知,则A.B.C.D.【答案】C【解析】【分析】由题意,求出代入公式求值,从而得到,即可求解得值。【详解】由题意,可得,代入回归直线的方程,可得,所以,故选C。【点睛】本题主要考查了线性回归方程的求法及其应用,其中解答中熟记回归直线的方程的应用,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题。3.观察如图所示的等高条形

3、图,其中最有把握认为两个分类变量x,y之间有关系的是(  )A.B.C.D.【答案】D【解析】【分析】直接观察等高条形图,如果两个分类变量所占的比例差距越大,则说明两个分类变量有关系的把握越大.【详解】在等高条形图中,x1,x2所占比例相差越大,分类变量x,y有关系的把握越大,故答案为:D【点睛】(1)本题主要考查考查通过等高条形图判断两个分类变量是否有关系,意在考查学生对该知识的掌握水平和分析推理能力.(2)在等高条形图中,如果两个分类变量所占的比例差距越大,则说明两个分类变量有关系的把握越大.4.图1和图2

4、中所有的正方形都全等,图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是()A.B.C.D.1【答案】A【解析】【分析】由题意,将图1中的正方形放在图2中的①②③④的某一位置,可得基本事件的总数为,只有图1中的正方形放在图2中的②③④处的某一位置时,所组成的图形能围成正方体,根据古典概型及其概率的计算公式,即可求解,得到答案.【详解】由题意,如图所示,图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④的某一位置,可得基本事件的总数为,又由图1中的正方形放在图2中的①处

5、时,所以组成的图形不能围成正方体;图1中的正方形放在图2中的②③④处的某一位置时,所组成的图形能围成正方体,所以将图1中的正方形放在图2中的①②③④的某一位置,所组成的图形能围成正方体的概率为,故选A.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中利用列举法得出只有将图1中的正方形放在图2中的②③④处的某一位置时,所组成的图形能围成正方体,再利用古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方

6、法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907966191925271431932458569683.该运动员三次投篮恰有两次命中的概率为:()A.B.C.D.【答案】C【解析】【分析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有可以通过列举得到共3组随机数,根据概率公式,

7、得到结果.【详解】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271、共3组随机数,故所求概率为:.故答案为:C.【点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.6.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长

8、为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A.B.C.D.【答案】C【解析】【分析】根据几何概率的求法:一次飞镖扎在中间小正方形区域(含边线)的概率就是阴影区域的面积与总面积的比值.【详解】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为1,面积为4﹣2故飞镖落在阴影区域的概率为1.故选:C.【点睛

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。