【人教版】2019年秋六年级上册数学教案:第三单元教材分析

【人教版】2019年秋六年级上册数学教案:第三单元教材分析

ID:44777136

大小:46.00 KB

页数:5页

时间:2019-10-28

【人教版】2019年秋六年级上册数学教案:第三单元教材分析_第1页
【人教版】2019年秋六年级上册数学教案:第三单元教材分析_第2页
【人教版】2019年秋六年级上册数学教案:第三单元教材分析_第3页
【人教版】2019年秋六年级上册数学教案:第三单元教材分析_第4页
【人教版】2019年秋六年级上册数学教案:第三单元教材分析_第5页
资源描述:

《【人教版】2019年秋六年级上册数学教案:第三单元教材分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三单元  分数除法     一、教学内容1.倒数的认识2.分数除法的计算3.问题解决二、教学目标1.使学生理解倒数的意义,掌握求一个数的倒数的方法。2.使学生体会分数除法的意义,理解并掌握分数除法的计算方法,会进行分数除法计算。3.使学生会解决一些和分数除法相关的实际问题。4.使学生体会数学与生活的密切联系,体会并掌握模型、方程、数形结合等数学思想。三、主要变化与具体编排(一)主要变化除了把“倒数”从“分数乘法”单元移过来和把“比”的内容另设单元以外,本单元还有两个较大的变化。1.删去“分数除法意义”的相关例题。考虑到学生对整数

2、乘、除法之间的关系已经非常熟悉,修订后的教材不再单独设置有关“分数除法意义”的例题,只在相关练习中进一步巩固分数乘、除法之间的关系。2.增加两类“问题解决”。第一类是和倍、差倍问题(两个量之间的“倍数关系”是以“几分之几”的形式出现的)。在这类问题中,有两个未知量,这两个未知量之间的数量关系也有两个。例如,第41页例6中,两个未知量分别是“上半场得分”和“下半场得分”,两个数量关系分别是“上半场和下半场共得42分”和“下半场得分是上半场的一半”。解决时,可以设其中一个未知量为x,利用其中的一个数量关系,用代数式表示出另一个未知量,

3、再利用另一个数量关系列出方程。设的未知数不同,列代数式和列方程所依据的数量关系不同,列出的方程也完全不同。例如,本例就可以列出如下一些方程。设其中一个未知量为x如果设上半场:x分如果设下半场:x分用代数式表示出另一个量下半场:(42-x)分(依据“全场得42分”)下半场:x分(依据“下半场得分是上半场的一半”)上半场:(42-x)分(依据“全场得42分”)上半场:2x分(依据“下半场得分是上半场的一半”,即“上半场得分是下半场的2倍”)列出方程42-x=x或x=2(42-x)(依据“下半场得分是上半场的一半”或“上半场得分是下半场

4、的2倍”)x+x=42(依据“全场得42分”)x=(42-x)或42-x=2x(依据“下半场得分是上半场的一半”或“上半场得分是下半场的2倍”)2x+x=42(依据“全场得42分”)虽然这些方程之间可以通过变形互相转化,但其背后的思考角度是各不相同的。教学时,要注意引导学生说一说解决问题的完整过程,并通过不同解法的交流,养成多角度地思考问题的习惯。第二类是可用抽象的“1”来解决的实际问题。教材利用修路这一“工程问题”来引入,使学生经历发现和提出问题、分析和解答问题的过程。例如,学生会认为题中缺少解题的信息,此时,教师追问:缺少什么

5、信息呢?学生会回答:不知道公路长多少千米。这样就很自然地引导学生假设公路总长为某个具体的长度,把新问题转化为旧问题,加以解决。通过学生之间的交流,发现虽然假设的公路具体长度不同,得到的结果却是相同的,使学生产生探究原因的欲望。通过分析,发现不管公路总长是多少,两队每天修的长度分别占总长度的和是不变的,这也是能得到相同结果的内在原因。此基础上,进一步抽象,可用“1”来表示公路总长。教学此例时,要注意以下几点。第一,这里不是要系统地教学各类“工程问题”,教学时不要对“工程问题”多变式、深挖掘、广训练。第二,不必要求学生死记硬背“工作总

6、量÷工作效率=工作时间”等数量关系,只要会用具体的语言描述出来就可以,如“公路的总长÷每天修的长度=需要修的天数”。第三,最重要的不是让学生记住结论,尤其不要把列出“1÷(+)”这一最简形式的算式作为教学的终极目标,形成“解题套路”,而是要让学生经历问题解决的全过程,掌握问题解决的技能和策略。例如,假设的方法是解决此类问题的重要策略,也是数学学习中常用的有效方法。如果学生认为把公路总长假设成一个具体的量来解决更易于理解,要允许学生继续采用这种一般性的解题思路。把公路总长假设成“1”(而不是1 km),需要学生具有更抽象的数学思维。

7、第四,要结合问题解决,使学生体会和运用基本的数学思想和方法,积累基本的活动经验。在此例的教学中,要注意体现变中有不变的思想、抽象的思想、模型的思想。为了让学生进一步体会模型化的思想,教材特意在练习中编排了运输问题、行程问题、泄洪问题、种树问题,使学生发现:虽然这些问题的现实背景各不相同,但其背后的数量关系是相同的。数学教学的一个重要任务就是让学生学会透过纷繁芜杂的现实情境的表象,找出体现数量之间本质关系的数学模型。(二)具体编排1.倒数的认识(1)例1。教材编排了几组乘积为1的乘法算式,使学生通过计算、观察、讨论等活动,归纳出它们

8、的共同规律,引出倒数的定义,并用实例突出“互为倒数”的含义。然后引导学生思考互为倒数的两个数有什么特点;如果两个数都是分数,那么这两个数的分子、分母交换位置;如果一个是整数,那么另一个分数的分子是1,分母就是该整数,为例1的学习打下基础。例1教学求

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。