欢迎来到天天文库
浏览记录
ID:44721080
大小:1.15 MB
页数:19页
时间:2019-10-26
《东北师大附中2018届高三四模数学试题理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、东北师大附中2018届高三四模数学试题理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.已知集合,,则()A.B.C.D.【答案】B【解析】分析:根据一元二次不等式的解法求得集合B,之后根据子集的定义可以判断出,根据交集中元素的特征求得,根据并集中元素的特征,可以求得,从而求得结果.详解:由可以求得,从而求得,所以,,故选B.点睛:该题以集合为载体,考查了一元二次不等式的解法,并考查了集合间的关系以及集合的交并运算,属于简单题目.2.已知,为虚数单位,若为实数,则的值为()A.4B.3C.2D.1【答案】
2、A【解析】分析:首先利用复数的运算法则,求得,再结合复数对应实部和虚部满足什么样的条件,从而对其进行分类的标准,得到a所满足的等量关系式,求得结果.详解:,若该复数是实数,只需,解得,故选A.点睛:该题考查的是复数的有关问题,在解题的过程中,需要先将题中所给的复数利用其运算法则将其化简,之后利用复数的分类对实虚部的要求找出其满足的等量关系式,之后求解即可.-19-3.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为:有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.
3、这个问题中,得到橘子最多的人所得的橘子个数是()A.15B.16C.18D.21【答案】C【解析】分析:首先根据题意,先确定其为一个等差数列的问题,已知公差、项数与和,求某项的问题,在求解的过程中,经分析,先确定首项,之后根据其和建立等量关系式,最后再利用通项公式求得第五项,从而求得结果.详解:设第一个人分到的橘子个数为,由题意得,解得,则,故选C.点睛:该题所考查的是有关等差数列的有关问题,在求解的过程中,注意分析题的条件,已知的量为公差、项数与和、而对于等差数列中,这五个量是知三求二的,所以应用相应的公式求得对应的量即可.4.已知,,,则A.B.C.D.【答案】B【
4、解析】∵,,∴,,∴-19-故选B.点睛:这个题目考查的是比较指数和对数值的大小;一般比较大小的题目,常用的方法有:先估算一下每个数值,看能否根据估算值直接比大小;估算不行的话再找中间量,经常和,,比较;还可以构造函数,利用函数的单调性来比较大小.5.一个棱锥的三视图如图所示,则这个棱锥的外接球的表面积为()A.B.C.D.【答案】A【解析】分析:首先根据题中所给的三视图,将几何体还原,得到该几何体是由一个长方体切割而成的,从而能够确定该几何体的各个顶点都在同一个长方体的顶点处,所以该几何体的外接球即为其对应的长方体的外接球,借助于长方体的对角线就是其外接球的直径,利用
5、公式求得结果.详解:根据题中所给的三视图可以断定该几何体应该是由长、宽、高分别是长方体所截成的四棱锥,所以该棱锥的外接球相当于对应的长方体的外接球,所以长方体的对角线就是其外接球的直径,所以有,从而求得其表面积为,故选A.点睛:该题考查的是有关几何体的外接球的的问题,关键是需要利用三视图还原几何体,再者就是应用长方体的对角线就是其外接球的直径,之后利用相应的公式求得结果即可.6.按照如图的程序框图执行,若输出结果为15,则M处条件为-19-A.B.C.D.【答案】A【解析】分析:首先根据题中所给框图,分析可知其任务是对等比数列求和的问题,发现数列是以1为首项,以2为公比
6、的等比数列,从而很容易发现其前4项和等于15,而对于k的值为数列的项,结合题中的条件,分析各选项,可以求得正确结果.详解:根据题中所给的程序框图,可以确定该题要求的是,对应的正好是以1为首项,以2为公比的等比数列,该数列的前4项和正好是15,结合题中所给的条件,一一试过,可知选A.点睛:该题考查的是有关程序框图的问题,该题属于补充条件的问题,在求解的过程中,注意数列的项的大小,以及项之间的关系,从而求得正确结果.7.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是A.至月份的收入的变化率与至月份的收入的变化率相同-19-B.支出最高值与支出最低值的比
7、是C.第三季度平均收入为万元D.利润最高的月份是月份【答案】D【解析】由图可知至月份的收入的变化率与至月份的收入的变化率相同,故正确;由图可知,支出最高值是,支出最低值是,则支出最高值与支出最低值的比是,故正确;由图可知,第三季度平均收入为,故正确;由图可知,利润最高的月份是月份和月份,故错误.故选D.8.学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“或作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“作品获得一等奖”.若这四位同
此文档下载收益归作者所有