20122013学年江苏省泰州市高三(上)期末数学

20122013学年江苏省泰州市高三(上)期末数学

ID:44708531

大小:518.50 KB

页数:21页

时间:2019-10-25

20122013学年江苏省泰州市高三(上)期末数学_第1页
20122013学年江苏省泰州市高三(上)期末数学_第2页
20122013学年江苏省泰州市高三(上)期末数学_第3页
20122013学年江苏省泰州市高三(上)期末数学_第4页
20122013学年江苏省泰州市高三(上)期末数学_第5页
资源描述:

《20122013学年江苏省泰州市高三(上)期末数学》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2012-2013学年江苏省泰州市高三(上)期末数学试卷参考答案与试题解析 一、填空题:(本大题共14小题,每小题4分,共56分.请将答案填入答题纸填空题的相应答题线上.)1.(4分)已知集合A={1,2,3},B={1,2,5},则A∩B= {1} .考点:交集及其运算.3481324专题:阅读型.分析:把两个集合的公共元素写在花括号内即可.解答:解:由A={1,2,﹣3},B={1,﹣4,5},则A∩B={1,2,﹣3}∩{1,﹣4,5}={1}.故答案为{1}.点评:本题考查了交集及其运算,考查了交

2、集概念,是基础的概念题. 2.(4分)设复数z1=2+2i,z2=2﹣2i,则= i .考点:复数代数形式的乘除运算.3481324专题:计算题.分析:把复数代入表达式,复数的分母、分子同乘分母的共轭复数,化简复数即可.解答:解:因为复数z1=2+2i,z2=2﹣2i,所以=====i.故答案为:i.点评:本题考查复数代数形式的混合运算,复数的分母实数化,是解题的关键,是基础题. 3.(4分)若数据x1,x2,x3,x4,x5,3的平均数为3,则数据x1,x2,x3,x4,x5的平均数为 3 .考点:众数

3、、中位数、平均数.3481324专题:概率与统计.分析:根据平均数的性质知,要求x1,x2,x3,x4,x5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.解答:解:∵x1,x2,x3,x4,x5,3的平均数为3,∴数x1+x2+x3+x4+x5+3=6×3∴x1,x2,x3,x4,x5的平均数=(x1+x2+x3+x4+x5)÷5=(6×3﹣3)÷5=3.故答案为:3.点评:本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数. 4.(4分)设双曲线的左、

4、右焦点分别为F1,F2,点P为双曲线上位于第一象限内的一点,且△PF1F2的面积为6,则点P的坐标为  .考点:双曲线的简单性质.3481324专题:计算题.分析:由双曲线方程,算出焦点F1、F2的坐标,从而得到

5、F1F2

6、=6.根据△PF1F2的面积为6,算出点P的纵坐标为2,代入双曲线方程即可算出点P的横坐标,从而得到点P的坐标.解答:解:∵双曲线的方程是,∴a2=4且b2=5,可得c==3由此可得双曲线焦点分别为F1(﹣3,0),F2(3,0)设双曲线上位于第一象限内的一点P坐标为(m,n),可得△

7、PF1F2的面积S=

8、F1F2

9、•n=6,即×6×n=6,解得n=2将P(m,2)代入双曲线方程,得,解之得m=.∴点P的坐标为故答案为点评:本题给出双曲线上一点与焦点构成面积为6的三角形,求该点的坐标,着重考查了三角形面积公式、双曲线的标准方程与简单几何性质等知识,属于基础题. 5.(4分)曲线y=2lnx在点(e,2)处的切线(e是自然对数的底)与y轴交点坐标为 (0,0) .考点:利用导数研究曲线上某点切线方程.3481324专题:导数的综合应用.分析:求出曲线方程的导函数,把切点横坐标代入导函数中

10、表示出的导函数值即为切线的斜率,由切点坐标和斜率表示出切线方程,把x=0代入切线方程中即可求出y轴交点坐标.解答:解:对y=2lnx求导得:y′=,∵切点坐标为(e,2),所以切线的斜率k=,则切线方程为:y﹣2=(x﹣e),把x=0代入切线方程得:y=0,所以切线与y轴交点坐标为(0,0).故答案为:(0,0).点评:本题的解题思想是把切点的横坐标代入曲线方程的导函数中求出切线的斜率,进而写出切线方程. 6.(4分)如图,ABCD是一个4×5的方格纸,向此四边形ABCD内抛撒一粒豆子,则豆子恰好落在阴影

11、部分内的概率为 0.2 .考点:几何概型.3481324专题:计算题;概率与统计.分析:试验发生包含的事件对应的图形是一个大长方形,若设小正方形的边长是1,则长方形的面积是20,满足条件的事件是正方形面积是4,根据面积之比做出概率.解答:解:由题意知本题是一个几何概型,设每一个小正方形的边长为1试验发生包含的事件对应的图形是一个长方形,面积为5×4=20阴影部分是边长为2的正方形,面积是4,∴落在图中阴影部分中的概率是=0.2故答案为:0.2点评:本题考查几何概型,解题的关键是求出两个图形的面积,根据概率

12、等于面积之比得到结果,本题是一个基础题. 7.(4分)设函数f(x)是定义在R上的奇函数,且f(a)>f(b),则f(﹣a) < f(﹣b)(用“>”或“<”填空).考点:函数奇偶性的性质.3481324专题:函数的性质及应用.分析:根据奇函数的性质f(﹣x)=﹣f(x)求解.解答:解:根据奇函数的性质,f(﹣a)=﹣f(a),f(﹣b)=﹣f(b);∵f(a)>f(b),∴﹣f(a)<﹣f(b),即f(﹣a)<f(﹣b).故

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。