欢迎来到天天文库
浏览记录
ID:44708015
大小:478.35 KB
页数:11页
时间:2019-10-25
《辽宁省六校协作体2018_2019学年高二数学6月联考试题理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、辽宁省六校协作体2018-2019学年高二数学6月联考试题理一.选择题(每题5分)1.若集合U=R,集合,,则=()A.{}B.{}C.{}D.{}2.若复数z满足(i为虚数单位),则为( )A.B.C.D.3.函数(为自然对数的底数)的图象可能是 A.B.C.D.4.在菱形ABCD中,若,则等于( )A.2B.-2C.D.与菱形的边长有关5.已知为抛物线的焦点,为原点,点是抛物线准线上一动点,若点在抛物线上,且,则的最小值为()A.B.C.D.6.已知,且,则的最小值为()A.8B.4C.D.7.命题“,”的否
2、定为()A.,B.,C.,D.,8.在区间中任取一个实数,使函数,在上是增函数的概率为()A.B.C.D.9.在正方体中,若点为正方形的中心,则异面直线与所成角的余弦值为()A.B.C.D.10.在中,角的对边分别是,,,且,则的面积为().A.B.C.6D.1211.已知函数恰有两个极值点,则的取值范围是()A.B.C.D.12.过双曲线左焦点的直线与交于,两点,且,若,则的离心率为()A.2B.C.3D.二.填空题(每题5分)13.设曲线在点处的切线方程为,则_______.14.若满足约束条件,则的最小值为___
3、_______.15.如图,半圆O的直径为2,A为直径延长线上一点,OA=2,B为半圆上任意一点,以线段AB为腰作等腰直角△ABC(C、O两点在直线AB的两侧),当∠AOB变化时,OC≤m恒成立,则m的最小值为______.16.已知点在半径为2的球的球面上,且,,两两所成的角相等,则当三棱锥的体积最大时,平面截球所得的截面圆的面积为____.三.解答题17.(12分)已知等差数列的前项和为,,.数列为等比数列,且,.(1)求数列和的通项公式;(2)记,其前项和为,证明:.18.(12分)某中学的环保社团参照国家环境标
4、准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):空气质量指数空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染该社团将该校区在2018年11月中10天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.(1)以这10天的空气质量指数监测数据作为估计2018年11月的空气质量情况,则2018年11月中有多少天的空气质量达到优良?(2)从这10天的空气质量指数监测数据中,随机抽取三天,求恰好有一天空气质量良的概
5、率;(3)从这10天的数据中任取三天数据,记表示抽取空气质量良的天数,求的分布列和期望.19.(12分)如图,三棱锥中,平面,,,,为的中点,过点作平行于,且.连接,,.(1)证明:⊥平面;(2)求直线与平面所成角的余弦值.(3)求二面角的余弦值.20.(12分)已知椭圆C:的离心率为,,分别为椭圆C的左、右顶点,点满足.(1)求椭圆C方程;(2)设直线经过点且与C交于不同的两点、,试问:在x轴上是否存在点,使得直线与直线的斜率的和为定值?若存在,求出点的坐标及定值,若不存在,请说明理由.21.(12分)已知函数在点处
6、的切线方程.(1)求,的值及函数的极值;(2)若且对任意的恒成立,求的最大值.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。22.(本题满分为10分)[选修4-4:坐标系与参数方程]已知曲线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设,.直线与曲线交于点,.求的值.21.(本题满分为10分)选修4-5:不等式选讲已知函数.(1)当时,求不等式的解集;(2)若,,求实数
7、的取值范围.2018—2019下学期高二六月联考理数参考答案1.A2.D3.C4.B5.D6.A7.B8.A9.C10.C11.A12.D13.-114.0.15.2+116.17.(1),;(2)见解析(1)解:设的公差为则由,得,解得所以设的公比因为,且所以,所以。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6分(2)证明:因为,所以。。。。。。。。。。。。。。。。12分18.(1)11月中平均有9天的空气质量达到优良;(2);(3)见解析(1)由频率分布直方图,知这10天中1级优1天,2
8、级良2天,3-6级共7天.所以这10天中空气质量达到优良的概率为,因为,所以11月中平均有9天的空气质量达到优良.。。。。。。。。。。。。。。。。。。。。。3分(2)记“从10天的空气质量指数监测数据中,随机抽取三天,恰有一天空气质量优良”为事件,则,即恰好有一天空气质量良的概率..。。。。。。。。。。。。。。。。。。。。。。。。
此文档下载收益归作者所有