资源描述:
《SAR成像算法的比较(重点介绍了wk算法)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING,VOL.30,NO.3.JULY1992AComparisonofRange-DopplerandWavenumberDomainSARFocusingAlgorithmsRichardBamlerAbstract-FocusingofSARdatarequiresaspace-variantexplicitmatchedfilteringbasedonthetechnologyavailabletwo-dimensionalcorrelation.
2、Differentalgorithmsarecomparedatthattime(see,e.g.,[13]).Theoriginalw-kalgorithm[6],witheachotherintermsoftheirfocusingqualityandtheir[7],[lo]wasformulatedintermsofthewaveequation:Theabilitytohandlethespace-varianceofthecorrelationkernel:therelationshipwithtraditionalfocus
3、ingmethodswasnotobviousrangeDopplerapproachwithandwithoutsecondaryrangecom-pression,modifiedrangeDoppleralgorithms,andfourversionsatall,whichmighthavecausedaninitialscepticismagainstofthewavenumberdomainprocessor.Thephaseaberrationsofthenewapproach.In[9],[ll]approximation
4、softhew-kthedifferentalgorithmsaregiveninanalyticform.NumericalalgorithmhavebeenderivedusingFouriercalculus.examplesarepresentedforSeasatandERS-1.AnovelsystemsInthispaperasystemstheoreticalderivationofthew-ktheoreticalderivationofthewavenumberdomainalgorithmisalgorithmini
5、tsstrictformulation-includingtheStoltinter-presented.polation[6],171,[lo],[12]-isgiven,withoutemployingtheKeywords-SyntheticApertureRadar(SAR)dataprocessing,waveequationreasoning.ThisallowsacomparisonofRDandrangeDoppleralgorithm,wavenumberdomainalgorithm,sec-w-kalgorithms
6、withrespecttothefollowingtwoquestions:ondaryrangecompression.1.Howaccuratelyisthefocusingcorrelationkernelap-proximated?ThisquestionisaddressedbyinvestigatingI.INTRODUCTIONthephaseaberrationsoftheimpliedtransferfunction,ROCESSINGofSyntheticApertureRadar(SAR)datai.e.,ofthe
7、two-dimensionalFouriertransformoftheker-Prequiresatwo-dimensionalspace-variantcorrelationofnel.Inthiscontextitissufficienttorestricttheanalysisthereceivedechodatawiththepointscattererresponseoftoasmallrangeinterval,ineffectneglectingthespace-theSARdataacquisitionsystem.Bo
8、ththeshapeandthevariantnatureoftheproblem.Asimilarmethodologyisphasehistoryofthecorrelationkerne