资源描述:
《江苏省苏州大学高三高考考前指导卷1数学试题含解析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、苏州大学2016届高考考前指导卷(1)一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合A={l,a},B={1,3,4},且AD3={1,3},则实数臼的值为▲.【答案】3.【解析】试题分析:由力门3={1,3}可知IwA且3wA,有ci=3.考点:集合元素互异性7—312.i是虎数单位,复数2满足—=贝l」lzl=▲.4i【答案】5【解析】试题分析:由题意得N=4F+3i=-4+3i,那么
2、z
3、=5.考点:复数的模3.对一批产品的长度(单位:毫米)进行抽样检测,样木容暈为200,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[2
4、5,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为▲.【解析】试题分析:三等品总数〃二[1一(0.05+0.0375+0.0625)x5]x200=50.考点:频率分布直方图1.某学校高三有弭,〃两个自习教室,甲、乙、丙三名同学随机选择其中一个教室自习,则他们在同一自习教室上自习的概率为▲【答案】丄4【解析】221试题分析:P==—=—2x2x284考点:古典概型概率1.执行如图所示的流程图,会输出一列数,则这列数中的第3个数是▲【答案】30.【解析】试题分析:上=3,N=l,输出3;A=6,N=2,输出6;
5、J=3O,N=3,输出30;则这列数中的第3个数是30.x26.已知双曲线C:—考点:循环结构流程图=l(a>0^>0)的一条渐近线平行于直线/:y=2/+10,£L它的一个焦点在直线/上,则双曲线C的方程为▲【答案】—-r20=1【解析】试题分析:由双曲线的渐近线方程y=±-x可知h=2a;又由题意c=5,那么q二亦,双a22曲线方程为乂-工=1.520考点:双曲线的渐近线7.已知等差数列&}的前/;项和为且25-35=12,则数列{崩的公差是▲【答案】4.【解析】试题分析:2$—3$二2(3州+3d)—3(2坷+d)=3d=12,则d=4•考点:等差数列&己知一
6、个圆锥的底面积为2兀,侧面积为4兀,则该圆锥的体积为▲【解析】试题分析:设圆锥的底面半径为冇母线长为厶贝1」血2=2龙,兀rl=4兀,解得r=V2,/=2V2,故高h—V6»所以V=—7tr2h=—兀x2x品=兀.333考点:圆锥的体积29.己知直线x+y=b是函数y=ax+—的图象在点处的切线,贝ija+b—加=▲•x【答案】2.【解析】试题分析:由于卩点在函数y=aic+-图象和直线x+y=b±,则m=a+2,朋+l=b•又由函数X927=0+三的导函数沪=o—p可知,切线的斜率疋=一1=。一2,有0=1,朋=3和0=4,贝Ha+b-m=2.考点:导数儿何意义则
7、cos(彳+〃)—曲(〃详)=亠]0.若cos(兰-0)=^-,63【答案】—廿亜3【解析】试题分析:设t=——〃,有cost=•那么cos(—+0)—sin2(0——)=cos(只t)6366•2.2+巧sint=.3考点:给值求值11.在等腰直角△/!%屮,ZABC=90°,AB=BC=2,肘,N为/IC边上的两个动点,且满足MN=4i,则丽•丽的取值范围为▲4丽2_加4设MW中点为QBD2I-r由图形得到【答案】[
8、,2]【解析】试题分析:方法1:建立直角坐标系,设〃((),()),A(2,0),C((),2),则利用W=V2可设N(x0,2-x0)Af(x0
9、-l,3-x0),其中x0g[1,2],那么BM-BN=2(x02-3x0+3)g考点:向量数量积12.己知圆G/+y-2^-2y+l=0,直线厶3x+4y-17=0.若在直线/上任取一点〃作圆C的切线MA,MB,切点分別为昇,B,则昇〃的长度収最小值时直线的方程为丄_•【答案】6x+8y-19=0【解析】4C1试题分析:当曲的长度最小时,圆心角上iCB最小〉设为20,则由cos&==可知当&最小时,CMCM4ssB最犬,即3最小,那么,3丄几可知%=&=-亍,设直线曲的方程为3兀+4y=加.又11B+4—加
10、19919由CM=2可知,点C到直线血的距高为加即,解得
11、祖=冷或二经检验加225222则直线血的方程为6x+8y-19=0.考点:直线与圆位置关系13.己知函数=xWl'g(x)=d+l,若方程f(x)-g(x)=O有两个不同的实根,则I/(x-1),X>1.实数斤的取值范围是▲【解析】试题分析:画出两数/(x)的大致图象如下:则考虑临界情况,可知当函数巩兀)=尬+1的图象过4(1,0),B⑵◎时直线斜率k}=e-,k2=—,并且当k=l时,直线y=x+l与曲2线y=相切于点(0,1),贝IJ得到当函数/(X)与g(“)图象有两个交点时,实数斤的取值范围是(¥,1)U(1,£-1]・考点:函数与方程14.已知不等式