高中数学(1.2.2同角三角函数的基本关系)教案新人教a版必修4

高中数学(1.2.2同角三角函数的基本关系)教案新人教a版必修4

ID:44500785

大小:259.59 KB

页数:16页

时间:2019-10-22

高中数学(1.2.2同角三角函数的基本关系)教案新人教a版必修4_第1页
高中数学(1.2.2同角三角函数的基本关系)教案新人教a版必修4_第2页
高中数学(1.2.2同角三角函数的基本关系)教案新人教a版必修4_第3页
高中数学(1.2.2同角三角函数的基本关系)教案新人教a版必修4_第4页
高中数学(1.2.2同角三角函数的基本关系)教案新人教a版必修4_第5页
资源描述:

《高中数学(1.2.2同角三角函数的基本关系)教案新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、1.2.2同角三角函数的基本关系整体设计教学分析与三角函数的定义域、符号的确定-•样,同和三和函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注总学生重视对基本概念学习的良好习惯的形成,学会通过对基木概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起來,在使用时一要注意"同角”,至于角的表达形式是至关重要的,如Si『4H+cos24H=1等,二要注意这些关系式都是对于使它们有总义的那些角而言的,如tanci中的a是使得tana有总义的值,即aHkn+—,k$Z

2、.2己知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最棊本功能,在求值时,根据己知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三和函数的定义导出同处三和函数棊本关系式,并能运用同角三角函数的棊本关系式进行三角函数的化简与证明.2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的

3、学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角苗数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点'教辜重点:课本的三个公式的推导及应用.教学难点:课本的三个公式的推导及应用.课时安排1课时教学过程导入新课思路1.先请学生回忆任遺角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(l)sin290°+cos'90°:(2)sin230°+cos230°;(3)⑷";(4)⑷门‘cos60cos135°推进

4、新课新知探究提出问题①在以下两个等式中的角是否都可以是任意角?若不能,角«应受什么影响?如图1,以正弦线Ml余弦线0M和半径0P三者的长构成直角三角形,而且0P二1.由勾股定理有OM2IMP2=1.因此x2+y2=l,即sin2a+cos2a=1(等式1).显然,当a的终边与坐标轴重合时,这个公式也成立.71根据三角函数的定义,当aHkn+-,kGZ时,有2sina/亦亠小=tana(爭式2).C0S6Z这就是说,同一个角a的正弦、余弦的平方和等于1,商等于角a的正切.②对于同一个角的正弦、余弦、正切,至少应知道其中的儿个值才能利用基本关系式求出其他的三角函数的值.活动:问

5、题①先让学生用自己的语言叙述同角三角函数的基木关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没冇思路的学生教师点拨其思考的方法,最后得岀结论“知一求二”.讨论结果:①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,«可以是任意角,在第二个等式中aHk7T+—,kG乙2②在上述两个等式中,只要知道其中任总一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余眩(正弦),用等式1;进而用第二个等式2求出正切

6、.应用示例4思路1例1己知sina二一,并且a是第二象限的角,求cosa,tana的值.5活动:同角三角函数的基木关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系•可以引导学牛.观察与题设条件最接近的关系式是sin2a+cos2a=l,故cosa的值最容易求得,在求cosa吋需要进行开平方运算,因此应根据角a所在的彖限确定cosa的符号,在此基础上教师指导学生独立地完成此题.解:因为sin2a+cos2a=l,所以25cos2a=l-sin2a=l-(l)2=95从而tana二聖巴COS67亠亠53乂因为a是第二彖限角,所以cosa<0.于

7、是cosa=—点评:木题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tana二-纟中的负号来口«是第二象限角,这也是根据商数关系直接运算后的结果,3它不同于在选用平方关系式的三角函数符号的确定.例2已知cosa=,求sina,tana的值.17活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cosa<0是不能确定角a的终边所在的象限,它可能在x轴的负半轴上(这时cosa二T)・解:因为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。