欢迎来到天天文库
浏览记录
ID:29365873
大小:200.50 KB
页数:5页
时间:2018-12-19
《高中数学 1.2.2 同角的三角函数的基本关系 教案 新人教a版必修4 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.2.2同角的三角函数的基本关系一、教学目标:⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;2通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;3注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.二、教学重、难点重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两
2、个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点:根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义,推导同角三角函数的基本关系式:及,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学过程【创设情境】OxyPM1A(1,0)与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】探究:三角函数是以单位
3、圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角不同三角函数之间的关系吗?如图:以正弦线,余弦线和半径三者的长构成直角三角形,而且.由勾股定理由,因此,即.根据三角函数的定义,当时,有.这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.【例题讲评】例1化简:解:原式例2已知解:(注意象限、符号)例3求证:分析:思路1.把左边分子分母同乘以,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx)先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思
4、路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.证法1:左边=右边,∴原等式成立证法2:左边===右边证法3:∵,∴证法4:∵cosx≠0,∴1+sinx≠0,∴≠0,∴===1,∴.∴左边=右边∴原等式成立.例4已知方程的两根分别是,求解:(化弦法)例5已知,求解:【课堂练习】化简下列各式1.2.3.练习答案:解:(1)原式===(2)原式===【学习小结】(1)同角三角函数的关系式的前提是“同角
5、”,因此,.(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.(1)作业:习题1.2A组第10,13题.(2)熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关系式;注意三角恒等式的证明方法与步骤.【课后作业】见学案【板书设计】略【教学反思】
此文档下载收益归作者所有