3、3■7£胸f'Zi心fZixifZf'Z013.01.00174.53.0027.74.10.33123.71207.01284.3253.9分236.1294.1364.23245.63303.0-1.5475.74255.8■86.65275.26107.1627.74.1・4・07136.78174.5-0.67
4、approximationsto『J1+(COS⑴)2dxa>DetermineR1,1,R2/1,R3,1/R4,landR5,l,andusetheseapproximationstopredictthevalueoft
5、heintegral.b、DetermineR2,2,R3,3,R4?4‘andR5,5,andmodifyyourprediction.c^DetermineR6,l,R6,2,R6,3,R6,4,R6,5andR6,6,andmodifyyourprediction.d、e、DetermineR7,7,R8,8,R9,9,andR10,10,andmakeafinalprediction.ExplainwhythisintegralcausesdifficultywithRombergintegrationandhowitcanbere
6、formulatedtomoreeasilydetermineanaccurateapproximation.8、分别用1)Eulermethod2)ModifiedEulerMethod3)Runge-KuttaOrderFour求解P264:7a并计算其误差;Giventheinitial-valueproblem:+f+l0<5y(0)=1WithexactsolutionA:Approximatey(5)withh=0.2,h=0.1/h=0.05.9、课木P279Example4:Fortheproblemyz=y-tA2+l
7、z0<=t<=2,y(0)=0.5,Euler'sMethodwithh=0.025,theMod讦iedEulerMethodwithh=0.05,andtheRunge-Kuttafourth-ordermethodwithh=0.1arecomparedatthecommonmeshpointsofthesemethods0.1,0.2,030.4and0.5.Eachofthesetechniquesrequires20functionalevaluationstodeterminethevalueslistedinTable5.8
8、toapproximatey(0.5).Inthisexample,thefourth-ordermethodisclearlysuperior.10、P322Exercise5.91UsetheRunge-Kuttamethodforsystemstoapproximatethesolutionsofthefollowingsystemsoffirst-orderdifferentialequations,andcomparetheresultstotheactualsolutions.A:—+2色_(2广+Q;=+(厂+2f—4)幺"0
9、「51坷(°)=1饥2(°)=1力=0.2actualsolutionsW1(r)=(l/3>5/-(l/3>_/+e2/Iu2(t)=(1/3)0+(2/3)k+t2e2t11