《概率论与数理统计 盛骤 & 谢式千 & 潘承毅)第1章

《概率论与数理统计 盛骤 & 谢式千 & 潘承毅)第1章

ID:44280498

大小:3.50 MB

页数:135页

时间:2019-10-20

《概率论与数理统计 盛骤 & 谢式千 & 潘承毅)第1章_第1页
《概率论与数理统计 盛骤 & 谢式千 & 潘承毅)第1章_第2页
《概率论与数理统计 盛骤 & 谢式千 & 潘承毅)第1章_第3页
《概率论与数理统计 盛骤 & 谢式千 & 潘承毅)第1章_第4页
《概率论与数理统计 盛骤 & 谢式千 & 潘承毅)第1章_第5页
资源描述:

《《概率论与数理统计 盛骤 & 谢式千 & 潘承毅)第1章》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、二、随机现象四、小结一、概率论的诞生及应用三、随机试验第一节随机试验1654年,一个名叫梅累的骑士就“两个赌徒约定赌若干局,且谁先赢c局便算赢家,若在一赌徒胜a局(a

2、讯工程中概率论可用以提高信号的抗干扰性、分辨率等等.在一定条件下必然发生的现象称为确定性现象.“太阳不会从西边升起”,1.确定性现象“同性电荷必然互斥”,“水从高处流向低处”,实例自然界所观察到的现象:确定性现象随机现象二、随机现象在一定条件下可能出现也可能不出现的现象称为随机现象.实例1在相同条件下掷一枚均匀的硬币,观察正反两面出现的情况.2.随机现象“函数在间断点处不存在导数”等.结果有可能出现正面也可能出现反面.确定性现象的特征条件完全决定结果结果有可能为:1,2,3,4,5或6.实例3抛掷一枚骰子,观

3、察出现的点数.实例2用同一门炮向同一目标发射同一种炮弹多发,观察弹落点的情况.结果:弹落点会各不相同.实例4从一批含有正品和次品的产品中任意抽取一个产品.其结果可能为:正品、次品.实例5过马路交叉口时,可能遇上各种颜色的交通指挥灯.实例6出生的婴儿可能是男,也可能是女.实例7明天的天气可能是晴,也可能是多云或雨.随机现象的特征概率论就是研究随机现象规律性的一门数学学科.条件不能完全决定结果2.随机现象在一次观察中出现什么结果具有偶然性,但在大量试验或观察中,这种结果的出现具有一定的统计规律性,概率论就是研究随

4、机现象这种本质规律的一门数学学科.随机现象是通过随机试验来研究的.问题什么是随机试验?如何来研究随机现象?说明1.随机现象揭示了条件和结果之间的非确定性联系,其数量关系无法用函数加以描述.1.可以在相同的条件下重复地进行;2.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3.进行一次试验之前不能确定哪一个结果会出现.在概率论中,把具有以下三个特征的试验称为随机试验.定义三、随机试验说明1.随机试验简称为试验,是一个广泛的术语.它包括各种各样的科学实验,也包括对客观事物进行的“调查”、“观察”或

5、“测量”等.实例“抛掷一枚硬币,观察字面,花面出现的情况”.分析2.随机试验通常用E来表示.(1)试验可以在相同的条件下重复地进行;1.抛掷一枚骰子,观察出现的点数.2.从一批产品中,依次任选三件,记录出现正品与次品的件数.同理可知下列试验都为随机试验.(2)试验的所有可能结果:字面、花面;(3)进行一次试验之前不能确定哪一个结果会出现.故为随机试验.3.记录某公共汽车站某日上午某时刻的等车人数.4.考察某地区10月份的平均气温.5.从一批灯泡中任取一只,测试其寿命.四、小结随机现象的特征:1.概率论是研究随

6、机现象规律性的一门数学学科.条件不能完全决定结果.2.随机现象是通过随机试验来研究的.(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.随机试验一、样本空间样本点三、随机事件间的关系及运算二、随机事件的概念四、小结第二节 样本空间、随机事件问题随机试验的结果?定义随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即试验E的每一个结果,称为样本点.实例1抛掷一枚硬币,观察字面,花面出现

7、的情况.一、样本空间样本点实例2抛掷一枚骰子,观察出现的点数.实例3从一批产品中,依次任选三件,记录出现正品与次品的情况.实例4记录某公共汽车站某日上午某时刻的等车人数.实例5考察某地区12月份的平均气温.实例6从一批灯泡中任取一只,测试其寿命.实例7记录某城市120急救电话台一昼夜接到的呼唤次数.答案写出下列随机试验的样本空间.1.同时掷三颗骰子,记录三颗骰子之和.2.生产产品直到得到10件正品,记录生产产品的总件数.课堂练习2.同一试验,若试验目的不同,则对应的样本空间也不同.例如对于同一试验:“将一枚硬

8、币抛掷三次”.若观察正面H、反面T出现的情况,则样本空间为若观察出现正面的次数,则样本空间为说明1.试验不同,对应的样本空间也不同.随机事件随机试验E的样本空间S的子集称为E的随机事件,简称事件.试验中,骰子“出现1点”,“出现2点”,…,“出现6点”,“点数不大于4”,“点数为偶数”等都为随机事件.实例抛掷一枚骰子,观察出现的点数.1.基本概念二、随机事件的概念2.几点说明例如抛掷一枚骰子,观察出

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。