欢迎来到天天文库
浏览记录
ID:44224383
大小:374.50 KB
页数:12页
时间:2019-10-19
《三角函数恒等 变换》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、三角函数恒等变换一、三角函数的诱导公式1、下列各角的终边与角α的终边的关系角2kπ+α(k∈Z)π+α-α图示与α角终边的关系相同关于原点对称关于x轴对称角π-α-α+α图示与α角终边的关系关于y轴对称关于直线y=x对称2、六组诱导公式组数一二三四五六角2kπ+α(k∈Z)π+α-απ-α-α+α正弦sinα-sinα-sinαsinαcosαcosα余弦cosα-cosαcosα-cosαsinα-sinα正切tanαtanα-tanα-tanα口诀函数名不变符号看象限函数名改变符号看象限注:诱导公式可概括为12的各三角函数值的化简公式。记忆规律是:奇变偶不变,符号
2、看象限。其中的奇、偶是指的奇数倍和偶数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号。二、两角和与差的正弦、余弦和正切公式1、两角和与差的正弦、余弦和正切公式2、二倍角的正弦、余弦、正切公式.sinα=,cosα=3、形如asinα+bcosα的化简asinα+bcosα=sin(α+β).其中cosβ=,sinβ=三、简单的三角恒等变换121、用cosα表示sin2,cos2,tan2sin2=;cos2=;tan2=注:上述三组公式从左到右起到一个扩角降幂的作用;从右到左起到一个缩角升幂的作用
3、。2、用cosα表示sin,cos,tansin=cos=tan=3、用sinα,cosα表示tantan=四、常用数据:的三角函数值,,注:⑴以上公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如等.从而可做到:正用、逆用、变形用自如使用各公式.⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备.⑶三角函数恒等变形的基本策略。①常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。②项的分拆与角的配凑。如分拆项:;配凑角(常用角变换):、、12、、等.③降次与升次。即倍角公式
4、降次与半角公式升次。④化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。⑤引入辅助角。asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。1、三角函数式的化简※相关链接※(1),,,的三角函数值是化简的主要工具。使用诱导公式前,要正确分析角的结构特点,然后确定使用的诱导公式;(2)不能直接使用诱导公式的角通过适当的角的变换化为能使用诱导公式的角,如:等。注:若出现时,要分为奇数和偶数讨论。(3)诱导公式的应用原则是:负化正,大化小,化到锐角为终了。特殊角能求值则求值;(4)化简是一种不能指定答案的恒等变形,化
5、简结果要尽可能使项数少、函数的种类少、次数低、能求出值的要求出值、无根式、无分式等。※例题解析※〖例〗化简:思路分析:化简时注意观察题设中的角出现了,需讨论是奇数还是偶数。122、三角函数的求值※相关链接※(1)六个诱导公式和同角三角函数的关系是求值的基础;(2)已知一个角的三角函数值,求其他角三角函数值时,要注意对角化简,一般是把已知和所求同时化简,化为同一个角的三角函数,然后求值。※例题解析※〖例〗已知,求的值。思路解析:化简已知条件化简所求三角函数式,用已知表示代入已知求解3、诱导公式在三角形中的应用〖例1〗在ΔABC中,若sin(2π-A)=sin(π-β),
6、cosA=cos(π-β)求ΔABC的三内角。思路分析:本题首先利用诱导公式把所给两个等式化简,然后利用,求出cosA的值,再利用A+B+C=π进行计算。12注:在ΔABC中常用的变形结论有:∵A+B+C=π,2A+2B+2C=2π,,∴sin(A+B)=sin(π-C)=sinC;cos(A+B)=cos(π-C)=-cosC;tan(A+B)=tan(π-C)=-tanC;sin(2A+2B)=sin(2π-2C)=-sin2C;cos(2A+2B)=cos(2π-2C)=cos2C;tan(2A+2B)=tan(2π-2C)=-tan2C;sin()=sin()
7、=cos;cos()=cos()=sin.以上结论应在熟练应用的基础上加强记忆。〖例2〗是否存在α∈(,),β∈(0,π),使等式sin(3π-α)=cos(-β),cos(-α)=cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由。思路分析:要想求出α,β的值,必须知道α,β的某一个三角函数值,因此,解决本题的关键是由两个等式消去α或β的同名三角函数值。注:已知角α的三角函数值求角α的一般步骤是:(1)由三角函数值的符号确定角α所在的象限;(2)据角α所在的象限求出角α的最小正角;(3)最后利用终边相同的角写出角α的一般表达式。
此文档下载收益归作者所有