不等式的性质--比较实数大小的方法(教案)

不等式的性质--比较实数大小的方法(教案)

ID:44175273

大小:106.00 KB

页数:3页

时间:2019-10-19

不等式的性质--比较实数大小的方法(教案)_第1页
不等式的性质--比较实数大小的方法(教案)_第2页
不等式的性质--比较实数大小的方法(教案)_第3页
资源描述:

《不等式的性质--比较实数大小的方法(教案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、课题:2.1不等式的性质--比较实数大小的方法教学目的:1.了解不等式的实际应用及不等式的重要地位和作用;2.掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.教学重点:比较两实数大小.教学难点:差值比较法:作差→变形→判断差值的符号授课类型:新授课教学过程:一、引入:人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式

2、与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系生活中为什么糖水中加的糖越多越甜呢?转化为数学问题:a克糖水中含有b克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为,加入m克糖后的糖水浓度为,只要证>即可怎么证呢?引人课题二、讲解新课:1.不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式.2.判断两个实数大小的充要条件对于任意两个实数a、b,在a>b,a=b,a<b三种关系中有且仅有一种成立.判断两个实数大小的充要条件是:由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了.三、讲

3、解范例:例1比较与的大小分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)并根据实数运算的符号法则来得出两个代数式的大小把比较两个实数大小的问题转化为实数运算符号问题.本题知识点:整式乘法,去括号法则,合并同类项解:∵-∴<例2已知¹0,比较与的大小.分析:此题与例1基本类似,也属于两个代数式比较大小,但是其中的x有一定的限制,应该在对差值正负判断时引起注意,对于限制条件的应用经常被学生所忽略本题知识点:乘法公式,去括号法则,合并同类项解:∵-∵∴从而>引伸:在

4、例2中,如果没有x≠0这个条件,那么两式的大小关系如何?若没有这一条件,则,从而大于或等于此题意在培养学生分类讨论的数学思想,提醒学生在解决含字母代数式问题时,不要忘记代数式中字母的取值范围,一般情况下,取值范围是实数集的可以省略不写得出结论:例1,例2是用作差比较法来比较两个实数的大小,其一般步骤是:作差——变形——判断符号这样把两个数的大小问题转化为判断它们差的符号问题,至于差本身是多少,在此无关紧要例3已知a>b>0,m>0,试比较与的大小解:∵a>b>0,m>0,∴a-b>0,a+m>0∴∴>从而揭示“糖水加糖甜更甜”的数学内涵例4比较与的大小.解:说明:“变形”的目

5、的是为了判定符号,“变形”是解题的关键,因式分解、配方、凑成若干个平方和等是“变形”的常用方法四、课堂练习:1.比较与的大小.2.如果,比较与的大小.3.已知,比较与的大小.五、小结:本节学习了实数的运算性质与大小顺序之间的关系,并以此关系为依据,研究了如何比较两个实数的大小,其具体解题步骤可归纳为:作差——变形——判断符号在某些特殊情况下(如两数均为正,且作商后易于化简)还可考虑运用作商法比较大小它与作差法的区别在于第二步,作商法是判断商值与1的大小关系六、课后作业:1.比较与的大小.提示:∵∵∴<2.比较与的大小.3.已知,比较与的大小解:-=……=∴≥七、板书设计(略)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。