二次函数同步练习试题

二次函数同步练习试题

ID:44138043

大小:424.60 KB

页数:10页

时间:2019-10-19

二次函数同步练习试题_第1页
二次函数同步练习试题_第2页
二次函数同步练习试题_第3页
二次函数同步练习试题_第4页
二次函数同步练习试题_第5页
资源描述:

《二次函数同步练习试题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、....二次函数基础分类练习题(练习一)1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t(秒)的数据如下表:时间t(秒)1234…距离s(米)281832…写出用t表示s的函数关系式.2、下列函数:①;②;③;④;⑤,其中是二次函数的是,其中,,3、当时,函数(为常数)是关于的二次函数4、当时,函数是关于的二次函数5、当时,函数+3x是关于的二次函数6、若点A(2,)在函数的图像上,则A点的坐标是____.7、在圆的面积公式S=πr2中,s与r的关系是(  )A、一次函

2、数关系 B、正比例函数关系 C、反比例函数关系 D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.9、如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加xcm,那么面积增加ycm2, ①求y与x之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函数当x=1时,y=-1;当x=2时,y=2,求

3、该函数解析式.11、富根老伯想利用一边长为a米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB为x米,则猪舍的总面积S(米2)与x有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC和宽AB的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数基础分类练习题(练习二)函数的图象与性质1、填空:(1)抛物线的对称轴是(或),顶点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小,当

4、x=时,该函数有最值是;(2)抛物线的对称轴是(或),顶点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小,当x=参考....时,该函数有最值是;2、对于函数下列说法:①当x取任何实数时,y的值总是正的;②x的值增大,y的值也增大;③y随x的增大而减小;④图象关于y轴对称.其中正确的是.3、抛物线y=-x2不具有的性质是(  )A、开口向下B、对称轴是y轴C、与y轴不相交D、最高点是原点4、苹果熟了,从树上落下所经过的路程s与下落时间t满足S=gt2(g=9.8),则s与t的函数图像大致是( ) 

5、stO stO stOstO         A       B       C       D5、函数与的图象可能是()A.B.C.D.6、已知函数的图象是开口向下的抛物线,求的值.7、二次函数在其图象对称轴的左侧,y随x的增大而增大,求m的值.8、二次函数,当x1>x2>0时,求y1与y2的大小关系.9、已知函数是关于x的二次函数,求:(1)满足条件的m的值;(2)m为何值时,抛物线有最低点?求出这个最低点,这时x为何值时,y随x的增大而增大;(3)m为何值时,抛物线有最大值?最大值是多少?当x为何值时,y

6、随x的增大而减小?10、如果抛物线与直线交于点,求这条抛物线所对应的二次函数的关系式.二次函数基础分类练习题(练习三)函数的图象与性质1、抛物线的开口,对称轴是,顶点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小.2、将抛物线向下平移2个单位得到的抛物线的解析式为,再向上平移3个单位得到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数k,得到不同的抛物线,当k取0,参考....时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其

7、中判断正确的是.4、将抛物线向上平移4个单位后,所得的抛物线是,当x=时,该抛物线有最(填大或小)值,是.5、已知函数的图象关于y轴对称,则m=________;6、二次函数中,若当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值等于.二次函数基础分类练习题(练习四)函数的图象与性质1、抛物线,顶点坐标是,当x时,y随x的增大而减小,函数有最值.2、试写出抛物线经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移个单位;(3)先左移1个单位,再右移4个

8、单位.3、请你写出函数和具有的共同性质(至少2个).4、二次函数的图象如图:已知,OA=OC,试求该抛物线的解析式.5、抛物线与x轴交点为A,与y轴交点为B,求A、B两点坐标及⊿AOB的面积.6、二次函数,当自变量x由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y随x值的变化情况.7、已知抛物线的顶点在坐标轴上,求k的值.二次函数基础分类练习题(练习五)的图象与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。