欢迎来到天天文库
浏览记录
ID:43877059
大小:429.90 KB
页数:51页
时间:2019-10-16
《网页学习排序算法分析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、ABSTRACTHigh-endadvancedinformationtechnologybroughtusintoavastdigitalage.Theinfluxofalargeamountofdatamakessearchenginebecomemoreandmoreimportant.Howtoquicklylocateneededinformationfromhugeamountsofdataisverycritical.Searchenginescontainmorethanonecomponentand
2、thewebpageschedulingpartwhichdeterminesthesearchenginesequencingresultsanddirectlyaffectstheperformanceofsearchenginesanduserexperienceisthecoreofsearchenginedesignproblem.Ininformationretrieval,therearemanywebpagesortingalgorithms,whichcanberoughlyclassifiedas
3、thepoint-wiseapproach,thepair-wiseapproachandthelist-wiseapproach.Researchershavemadegreatcontributionstousingavarietyofalgorithmsinthesethreekindsofmethodsandtheweblearningresearchisstillintheclimaxstage.Inviewoftheweblearningschedulingproblem,Firstly,wemodele
4、dtheweblearningschedulingmodelsbasedonSupportVectorMachinetheoryinpoint-wiseandpair-wiseapproachrespectively.BasedontheideaofcrossvalidationtochoosetheparametersoftheSVMmodelsandtheselectionofkernelfunctionisanalyzed・Normalizationandfractalfeaturedates*visualiz
5、ationanalysisgotdoneinthepreprocessingpart.Inpair-wisemodel,thisarticlegotthetrainingsampleintherandomsequencematchingmethod.Secondly,basedontheuseofheuristicmethodwehaveestablishedthesortinggeneticalgorithmtooptimizetheBPneuralnetworklearningmodel.Themodelused
6、theoptimizationabilityofgeneticalgorithmtogetgoodinitialweightsofBPnetworkandthresholdinordertoimprovetheperformanceofBPnetwork.Theprincipalcomponentanalysiswasusedtocompressthetrainingdataandtoguaranteehighdimensiondatafidelityaswellastomakeappropriatedegreeof
7、BPnetworkstructure.Thirdly,wedesignedaboostingpagesortingmodelwhichaimedatstudyingstrongcollator'spromotionperformanceonthebasisofweaklearningability.ExperimentsspecialforthethreemodelsonOHSUMEDdatasetwereconducted,resultanalysisandalgorithmcomparisonsdonenext.
8、Theexperimentalresultsshowthatpair-wiseapproachmodelperformedslightlybetterthanpoint-wiseapproachmodelandtheuseofgeneticalgorithmtooptimizeBPnetwork'sweightsandthresholdcani
此文档下载收益归作者所有