网页学习排序算法分析

网页学习排序算法分析

ID:43877059

大小:429.90 KB

页数:51页

时间:2019-10-16

网页学习排序算法分析_第1页
网页学习排序算法分析_第2页
网页学习排序算法分析_第3页
网页学习排序算法分析_第4页
网页学习排序算法分析_第5页
资源描述:

《网页学习排序算法分析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、ABSTRACTHigh-endadvancedinformationtechnologybroughtusintoavastdigitalage.Theinfluxofalargeamountofdatamakessearchenginebecomemoreandmoreimportant.Howtoquicklylocateneededinformationfromhugeamountsofdataisverycritical.Searchenginescontainmorethanonecomponentand

2、thewebpageschedulingpartwhichdeterminesthesearchenginesequencingresultsanddirectlyaffectstheperformanceofsearchenginesanduserexperienceisthecoreofsearchenginedesignproblem.Ininformationretrieval,therearemanywebpagesortingalgorithms,whichcanberoughlyclassifiedas

3、thepoint-wiseapproach,thepair-wiseapproachandthelist-wiseapproach.Researchershavemadegreatcontributionstousingavarietyofalgorithmsinthesethreekindsofmethodsandtheweblearningresearchisstillintheclimaxstage.Inviewoftheweblearningschedulingproblem,Firstly,wemodele

4、dtheweblearningschedulingmodelsbasedonSupportVectorMachinetheoryinpoint-wiseandpair-wiseapproachrespectively.BasedontheideaofcrossvalidationtochoosetheparametersoftheSVMmodelsandtheselectionofkernelfunctionisanalyzed・Normalizationandfractalfeaturedates*visualiz

5、ationanalysisgotdoneinthepreprocessingpart.Inpair-wisemodel,thisarticlegotthetrainingsampleintherandomsequencematchingmethod.Secondly,basedontheuseofheuristicmethodwehaveestablishedthesortinggeneticalgorithmtooptimizetheBPneuralnetworklearningmodel.Themodelused

6、theoptimizationabilityofgeneticalgorithmtogetgoodinitialweightsofBPnetworkandthresholdinordertoimprovetheperformanceofBPnetwork.Theprincipalcomponentanalysiswasusedtocompressthetrainingdataandtoguaranteehighdimensiondatafidelityaswellastomakeappropriatedegreeof

7、BPnetworkstructure.Thirdly,wedesignedaboostingpagesortingmodelwhichaimedatstudyingstrongcollator'spromotionperformanceonthebasisofweaklearningability.ExperimentsspecialforthethreemodelsonOHSUMEDdatasetwereconducted,resultanalysisandalgorithmcomparisonsdonenext.

8、Theexperimentalresultsshowthatpair-wiseapproachmodelperformedslightlybetterthanpoint-wiseapproachmodelandtheuseofgeneticalgorithmtooptimizeBPnetwork'sweightsandthresholdcani

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。