欢迎来到天天文库
浏览记录
ID:37373073
大小:3.25 MB
页数:75页
时间:2019-05-23
《网页排序中的随机模型及算法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、北京交通大学博士学位论文网页排序中的随机模型及算法姓名:刘玉婷申请学位级别:博士专业:运筹学与控制论指导教师:马志明20090401北京交通大学博+学位论文中文摘要成果,也验证了这一想法,为以后更多的理解排序问题奠定了基础.关键词:信息检索;排序问题;静态排序;动态排序;排序联合问题;马氏骨架过程;BrowseRank算法;监督学习分类号:0211北京交通大学博士学位论文ABSTRACTAstheWorld、MdeWebgrowsrapidly,searchengineshavebecomethemostpop-u
2、lartoolstoaccessthelargevolumeofinformationfromit.AndthekeyfactorofthesearchengineistherankingmodelofWebpages,whichcontainstWOtypes:staticrankanddynamicrank.Inpast,differentapproacheshavebeendesignedtOsolvethesetwoproblemsseparately.Inthisthesis,weanalyzethemo
3、nthesamebase—stochasticprocessmodel,anddesignnewalgorithmstosolvethemefficientlyandeffectively.Firstly,weestablishaframeworkonMarkovskeletonprocesstocomputethepageimportancebyinvestigatingrealbrowsingbehaviorsofusers.Wefindthattheimpor-tanceofWebpagesonusers’v
4、iewisdeterminedbytwofactors:visitingfrequencyandthelengthofthestayingtimeonthem.AndweprovethatthestationarydistributionoftheMarkovskeletonprocess(itexistsunderspecialconditions)cantakethesetwofac—torstogetherintotheaccount.Withinthisframework,wedesignagroupofe
5、ightnewnovelalgorithmsallreferredtOasBrowseRank,tocomputethepageimportancebasedonthecontinuous—timetime-homogeneousMarkovprocess,whichisoneofthreespe—cialcasesoftheMarkovskeletonprocess.Andfromtheexperimentalresults,wefindBrowseRankoutperformsotherbaselinealgo
6、rithms,suchasPageRankandTrustRank.Itistestifiedthatstochasticprocessmodelismoreeffectiveandefficientforpageim—portancecalculation.Moreimportant,ThefirstoneoftheseeightalgorithmsWaspre—sentedinSIGIR’08,andnowithasbecomethemostpopularalgorithminthefieldofcommerc
7、ialsearchengines.Suchinnovatoryalgorithmwasevaluatedbyvariousre—portagesasthenextPageRankandwillimpacttheprogressofsearchengineshighly,suchas’’Microsofttriestoone-upGooglePageRank’’byCNET.com.’’BrowseRank:TheNextPageRank,SaysMicrosoft”byWebProNewsandSOon.Secon
8、dly,webuildasupervisedframeworkforrankaggregationbasedonMarkovChain.Withinthisframework,Wenotonlygeneralizesomeunsupervisedalgorithmstosupervisedones,butalsodesignanewapproachrefer
此文档下载收益归作者所有