魏尔斯特拉斯函数

魏尔斯特拉斯函数

ID:43867700

大小:67.00 KB

页数:3页

时间:2019-10-16

魏尔斯特拉斯函数_第1页
魏尔斯特拉斯函数_第2页
魏尔斯特拉斯函数_第3页
资源描述:

《魏尔斯特拉斯函数》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、在数学中,魏尔斯特拉斯函数(Weierstrassfunction)是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。魏尔斯特拉斯函数得名于十九世纪的徳国数学家卡尔・魏尔斯特拉斯(KarlTheodorWilhelmWeierstrass;1815-1897)。历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯Z前,数学家们对函数的连续性认识并不深刻。许多数学家认为除了少数一些特殊的点以外,连续的函数

2、曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当吋数学家对连续函数的看法。构造魏尔斯特拉斯的原作小给出的构造是::f(x)=sum{n=0}飞inftyancos(b"npix),其0,b为正的奇数,使得::ab>l+frac{3}{2}pi.这个函数以及它处处连续而又处处不可导的证明首次出现在魏尔斯特拉斯于1872年6刀18日在普鲁士科学院出版的一篇论文中。证明这个甫数处处连续并不困难。

3、由于无穷级数的每一个函数项a^ncos(b"npix)的绝对值都小于常数a'n,而正项级数sum_{n=0}^inftya,'n是收敛的。由比较审敛法可以知道原级数一致收敛。因此,由于每一个函数项a"ncos(bnpix)都是{mathbbR}上的连续函数,级数和f(x)也是{mathbbR}上的连续两数。下面证明函数处处不可导:对一个给定的点x

4、in{mathbbR},证明的思路是找出趋于〈math>x的两组不同的数列〈math>(x_n)和(x*_n),使得:liminffrac{f(x_n)-f(x)}{x_n-x}>1imsupfrac{f(x*_n)一f(x)}{x'_n-x}.这与函数可导的定义才盾,于是证明完毕。一般人会直觉上认为连续的函数必然是近乎可导的。即使不可导,所谓不可导的点也必然只占整体的一小部分。根据魏尔斯特拉斯在他的论文中所描述,早期的许多数学家,包括高斯,都

5、曾经假定连续函数不可导的部分是有限或可数的。这可能是因为直观上想彖一个连续但在不可数个点上不町导的函数是很困难的事。当我们绘制函数的图像时,总会画出佼为规则的图形,例如满足利普希茨条件的函数图像。魏尔斯特拉斯函数町以被视为第一个分形函数,尽管这个名词当时还不存在。将魏尔斯特拉斯函数在任一点放人,所得到的局部图都和整体图形相似。因此,无论如何放人,函数图像都不会显得更加光滑,也不存在单调的区间。编辑木段处处不可导函数的稠密性分析学的成果表明,魏尔斯特拉斯函数并不是连续函数屮的少数几个特例之一。尽管它是“病态”函数的一种,但可以证明,这种病态的函数事实上不

6、在“少数”,浜至比那些“规则”的函数“多得多”。在测度论意义上:在配备了经典维纳测度Y的连续函数空间C([0,1];R)屮,至少有一处可导的函数所构成的集合的测度是0,也就是说和处处不可导的函数相比是可以“忽略”的。尔斯特拉斯的原作中给出的构造是:于(H)=刀©COS(bn7TX)71=0其中01+刁开・这个函数以及它处处连续而又处处不可导的证明首次出现在[魏尔斯特拉斯于1872年6月18日在普鲁士科学院出版的一篇论文中。证明这个函数处处连续并不困难。由于无穷级数的每一个函数项/COS(护7T£)8持绝对值都小于常数

7、口巴而正项级数力Q"是收敛的。n=0由比较审敛法可以知道原级数一致收敛。因此,由于每一个函数项anCOS(&n7TTW是展上的连续函数,级数和f{x)也是上的连续函数。•••••w•••••••••••••F面证明函数处处不可导:对一个给定的点①€展,证明的思路是找出趋于⑦的两组不同的数列(轴)和(此),使得••••••••••••••••••••••liminf5)一皿>limsup曲二型Xn—Xxn^X这与函数可导的定义矛盾,于是证明完毕。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。