山东省烟台市2018_2019学年高一数学下学期期末考试试题(含解析)

山东省烟台市2018_2019学年高一数学下学期期末考试试题(含解析)

ID:43850897

大小:895.64 KB

页数:22页

时间:2019-10-15

山东省烟台市2018_2019学年高一数学下学期期末考试试题(含解析)_第1页
山东省烟台市2018_2019学年高一数学下学期期末考试试题(含解析)_第2页
山东省烟台市2018_2019学年高一数学下学期期末考试试题(含解析)_第3页
山东省烟台市2018_2019学年高一数学下学期期末考试试题(含解析)_第4页
山东省烟台市2018_2019学年高一数学下学期期末考试试题(含解析)_第5页
资源描述:

《山东省烟台市2018_2019学年高一数学下学期期末考试试题(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2018-2019学年度第二学期期末学业水平诊断高一数学试题一、选择题:本大题共13小题,每小题4分,共52分。在每小题给出的四个选项中,第1~10题只有一项符合题目要求:第11~13题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。1.()A.B.C.D.【答案】B【解析】【分析】直接利用诱导公式化简得解.【详解】故选:B【点睛】本题主要考查了利用诱导公式化简及特殊角的三角函数值,属于基础题。2.若某扇形的弧长为,圆心角为,则该扇形的半径是()A.B.C.D.【答案】D【解析】【

2、分析】由扇形的弧长公式列方程得解.【详解】设扇形的半径是,由扇形的弧长公式得:,解得:故选:D【点睛】本题主要考查了扇形的弧长公式,考查了方程思想,属于基础题。3.如果点位于第四象限,则角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】【分析】由点位于第四象限列不等式,即可判断的正负,问题得解.【详解】因为点位于第四象限所以,所以所以角是第三象限角故选:C【点睛】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.4.已

3、知点,,则与向量方向相同的单位向量为()A.B.C.D.【答案】A【解析】【分析】由题得,设与向量方向相同的单位向量为,其中,利用列方程即可得解.【详解】由题可得:,设与向量方向相同的单位向量为,其中,则,解得:或(舍去)所以与向量方向相同的单位向量为故选:A【点睛】本题主要考查了单位向量的概念及方程思想,还考查了平面向量共线定理的应用,考查计算能力,属于较易题。5.函数的图象可由函数的图象()A.向左平移个单位长度得到B.向左平移个单位长度得到C.向右平移个单位长度得到D.向右平移个单位长度得到【答案】B

4、【解析】【分析】直接利用函数图象平移规律得解.【详解】函数的图象向左平移个单位长度,可得函数的图象,整理得:故选:B【点睛】本题主要考查了函数图象平移规律,属于基础题。6.设,是平面内一组基底,若,,,则以下不正确的是()A.B.C.D.【答案】D【解析】【分析】由已知及平面向量基本定理可得:,问题得解.【详解】因为,是平面内一组基底,且,由平面向量基本定理可得:,所以,所以D不正确故选:D【点睛】本题主要考查了平面向量基本定理的应用,还考查了同角三角函数的基本关系,属于较易题。7.已知角的顶点与原点重合,

5、始边与轴非负半轴重合,终边过点,则()A.B.C.D.【答案】C【解析】【分析】利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【详解】因为角的终边过点,所以点到原点的距离所以,所以故选:C【点睛】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题。8.下列函数中最小正周期为的是()A.B.C.D.【答案】C【解析】【分析】对A选项,对赋值,即可判断其最小正周期不是;利用三角函数的周期公式即可判断B、D的最小正周期不是,问题得解.【详解】对A选项,令,则,不满足,所以不是以为周

6、期的函数,其最小正周期不为;对B选项,的最小正周期为:;对D选项,的最小正周期为:;排除A、B、D故选:C【点睛】本题主要考查了三角函数的周期公式及周期函数的定义,还考查了赋值法,属于基础题。9.设,,是平面内共线的三个不同的点,点是,,所在直线外任意-点,且满足,若点在线段的延长线上,则()A.,B.,C.D.【答案】A【解析】【分析】由题可得:,将代入整理得:,利用点在线段的延长线上可得:,问题得解.【详解】由题可得:,所以可化为:整理得:,即:又点在线段的延长线上,所以与反向,所以,故选:A【点睛】本

7、题主要考查了平面向量中三点共线的推论,还考查了向量的减法及数乘向量的应用,考查了转化思想,属于中档题。10.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正边形逼近圆,算得圆周率的近似值记为,那么用圆的内接正边形逼近圆,算得圆周率的近似值加可表示成()A.B.C.D.【答案】C【解析】【分析】设圆的半径为,由内接正边形的面积无限接近

8、圆的面积可得:,由内接正边形的面积无限接近圆的面积可得:,问题得解.【详解】设圆的半径为,将内接正边形分成个小三角形,由内接正边形的面积无限接近圆的面积可得:,整理得:,此时,即:同理,由内接正边形的面积无限接近圆的面积可得:,整理得:此时所以故选:C【点睛】本题主要考查了圆的面积公式及三角形面积公式的应用,还考查了正弦的二倍角公式,考查计算能力,属于中档题。11.下列关于平面向量的说法中不正确的是()A.已知,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。