资源描述:
《分析化学武汉大学第五版第03章节》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3章分析化学中的误差及数据处理3.1分析化学中的误差3.2有效数字及其运算规则3.3有限数据的统计处理3.4回归分析法1准确度和精密度绝对误差:测量值与真值间的差值,用E表示E=x-xT3.1分析化学中的误差准确度:测定结果与真值接近的程度,用误差衡量。误差相对误差:绝对误差占真值的百分比,用Er表示Er=E/xT=x-xT/xT×100%真值:客观存在,但绝对真值不可测理论真值约定真值相对真值偏差:测量值与平均值的差值,用d表示d=x-x精密度:平行测定结果相互靠近的程度,用偏差衡量。∑di=0平均偏差:各单个偏差绝对值的平均值相对平均偏差:平均偏差与测量平均值的比值标准偏差:s相对标准
2、偏差:RSD准确度与精密度的关系准确度与精密度的关系1.精密度好是准确度好的前提;2.精密度好不一定准确度高系统误差!准确度及精密度都高-结果可靠2系统误差与随即误差系统误差:又称可测误差方法误差:溶解损失、终点误差-用其他方法校正仪器误差:刻度不准、砝码磨损-校准(绝对、相对)操作误差:颜色观察试剂误差:不纯-空白实验主观误差:个人误差具单向性、重现性、可校正特点随机误差:又称偶然误差过失由粗心大意引起,可以避免的不可校正,无法避免,服从统计规律不存在系统误差的情况下,测定次数越多其平均值越接近真值。一般平行测定4-6次10系统误差a.加减法R=mA+nB-pCER=mEA+nEB-pE
3、Cb.乘除法R=mA×nB/pCER/R=EA/A+EB/B-EC/Cc.指数运算R=mAnER/R=nEA/Ad.对数运算R=mlgAER=0.434mEA/A3误差的传递随机误差a.加减法R=mA+nB-pCsR2=m2sA2+n2sB2+p2sC2b.乘除法R=mA×nB/pCsR2/R2=sA2/A2+sB2/B2+sC2/C2c.指数运算R=mAnsR/R=nsA/Ad.对数运算R=mlgAsR=0.434msA/A极值误差最大可能误差R=A+B-CER=
4、EA
5、+
6、EB
7、+
8、EC
9、R=AB/CER/R=
10、EA/A
11、+
12、EB/B
13、+
14、EC/C
15、3.2有效数字及运算
16、规则1有效数字:分析工作中实际能测得的数字,包括全部可靠数字及一位不确定数字在内a数字前0不计,数字后计入:0.03400b数字后的0含义不清楚时,最好用指数形式表示:1000(1.0×103,1.00×103,1.000×103)c自然数和常数可看成具有无限多位数(如倍数、分数关系)d数据的第一位数大于等于8的,可多计一位有效数字,如9.45×104,95.2%,8.65e对数与指数的有效数字位数按尾数计,如pH=10.28,则[H+]=5.2×10-11f误差只需保留1~2位m◇分析天平(称至0.1mg):12.8228g(6),0.2348g(4),0.0600g(3)◇千分之一天平(
17、称至0.001g):0.235g(3)◇1%天平(称至0.01g):4.03g(3),0.23g(2)◇台秤(称至0.1g):4.0g(2),0.2g(1)V☆滴定管(量至0.01mL):26.32mL(4),3.97mL(3)☆容量瓶:100.0mL(4),250.0mL(4)☆移液管:25.00mL(4);☆量筒(量至1mL或0.1mL):25mL(2),4.0mL(2)2有效数字运算中的修约规则尾数≤4时舍;尾数≥6时入尾数=5时,若后面数为0,舍5成双;若5后面还有不是0的任何数皆入四舍六入五成双例下列值修约为四位有效数字0.324740.324750.324760.324850.3
18、248510.32470.32480.32480.32480.3249禁止分次修约运算时可多保留一位有效数字进行0.57490.570.5750.58×加减法:结果的绝对误差应不小于各项中绝对误差最大的数。(与小数点后位数最少的数一致)0.112+12.1+0.3214=12.5乘除法:结果的相对误差应与各因数中相对误差最大的数相适应(与有效数字位数最少的一致)0.0121×25.66×1.0578=0.3284323运算规则例0.0192H2O+CO23.3有限数据的统计处理总体样本样本容量n,自由度f=n-1样本平均值总体平均值m真值xT标准偏差sx1.总体标准偏差σ无限次测量;单次偏差
19、均方根2.样本标准偏差s样本均值n→∞时,→μ,s→σ3.相对标准偏差(变异系数RSD)1标准偏差x4.衡量数据分散度:标准偏差比平均偏差合理5.标准偏差与平均偏差的关系=0.7979σ≈0.86.平均值的标准偏差σū=σ/n1/2,sū=s/n1/2sū与n1/2成反比系统误差:可校正消除随机误差:不可测量,无法避免,可用统计方法研究1随机误差的正态分布测量值的频数分布频数,相对频数,骑墙现象分组细化