欢迎来到天天文库
浏览记录
ID:43803431
大小:259.77 KB
页数:5页
时间:2019-10-14
《信息论编码试卷1》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、信息论编码试卷1一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。(2)必然事件的自信息是0。(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍。(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。(5)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。(6)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。(7)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___
2、C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。(8)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关二、(9¢)判断题(1)信息就是一种消息。(´)(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。(Ö)(3)概率大的事件自信息量大。(´)(4)互信息量可正、可负亦可为零。(Ö)(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。(´)(6)对于固定的信源分布,平均互信息量是信道传递概率的下凸函数。(Ö)(
3、7)非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。(´)(8)信源变长编码的核心问题是寻找紧致码(或最佳码),霍夫曼编码方法构造的是最佳码。(Ö)(9)信息率失真函数R(D)是关于平均失真度D的上凸函数.(´)三、(5¢)居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示“大学生”这一事件,B表示“身高1.60以上”这一事件,则P(A)=0.25p(B)=0.5p(B
4、A)=0.75(2分)故p(A
5、B)=p(AB)/
6、p(B)=p(A)p(B
7、A)/p(B)=0.75*0.25/0.5=0.375(2分)I(A
8、B)=-log0.375=1.42bit(1分)五、(18’).黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0.3,白色出现的概率为0.7。给出这个只有两个符号的信源X的数学模型。假设图上黑白消息出现前后没有关联,求熵;2)假设黑白消息出现前后有关联,其依赖关系为,,,,求其熵。3)分别求上述两种信源的冗余度,比较它们的大小并说明其物理意义。解:1)信源模型为(1分)(2分) 2)由题意可知该信源为一阶马尔科夫信源。(2分)由4分)得极限状态概率(2分)3分)(1
9、分)。说明:当信源的符号之间有依赖时,信源输出消息的不确定性减弱。而信源冗余度正是反映信源符号依赖关系的强弱,冗余度越大,依赖关系就越大。(2分)六、(18’).信源空间为,试分别构造二元香农码和二元霍夫曼码,计算其平均码长和编码效率(要求有编码过程)。七(6’).设有一离散信道,其信道传递矩阵为,并设,试分别按最大后验概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。1)(3分)最小似然译码准则下,有,2)(3分)最大后验概率准则下,有,八(10¢).二元对称信道如图。 1)若,,求、和;2)求该信道的信道容量。解:1)共6分 2),(
10、3分)此时输入概率分布为等概率分布。(1分)九、(18¢)设一线性分组码具有一致监督矩阵1)求此分组码n=?,k=?共有多少码字?2)求此分组码的生成矩阵G。3)写出此分组码的所有码字。4)若接收到码字(101001),求出伴随式并给出翻译结果。解:1)n=6,k=3,共有8个码字。(3分)2)设码字由得(3分)令监督位为,则有(3分)生成矩阵为(2分)3)所有码字为000000,001101,010011,011110,100110,101011,110101,111000。(4分)4)由得,(2分)该码字在第5位发生错误,(101001)纠正为(101011),即译码为(10
11、1001)(1分)
此文档下载收益归作者所有