高三数学高考知识模块复习指导学案——直线与平面

高三数学高考知识模块复习指导学案——直线与平面

ID:43420526

大小:330.00 KB

页数:15页

时间:2019-10-02

高三数学高考知识模块复习指导学案——直线与平面_第1页
高三数学高考知识模块复习指导学案——直线与平面_第2页
高三数学高考知识模块复习指导学案——直线与平面_第3页
高三数学高考知识模块复习指导学案——直线与平面_第4页
高三数学高考知识模块复习指导学案——直线与平面_第5页
资源描述:

《高三数学高考知识模块复习指导学案——直线与平面》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考数学知识模块复习指导复习系列学案——直线与平面【考点梳理】一、考试内容1.平面。平面的基本性质。平面图形直观图的画法。2.两条直线的位置关系。平行于同一条直线的两条直线互相平行。对应边分别平行的角。异面直线所成的角。两条异面直线互相垂直的概念。异面直线的公垂线及距离。3.直线和平面的位置关系。直线和平面平行的判定与性质。直线和平面垂直的判定与性质。点到平面的距离。斜线在平面上的射影。直线和平面所成的角。三垂线定理及其逆定理。4.两个平面的位置关系。平面平行的判定与性质。平行平面间的距离。二面角及其平面角

2、。两个平面垂直的判定与性质。二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。对于异面直线的距离,只要求会计算已给出公垂线时的距离。2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。对于异面直线上两点的距离公式不要求记忆。3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。能够画出空间两条直线、两个平面、直线和平面的各种

3、位置关系的图形,能够根据图形想象它们的位置关系。4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线

4、的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。四、思想方法1.用类比的思想去认识面的垂直与平行关系,注意垂直与平行间的联系。2.注意立体几何问题向平面几何问题的转化,即立几问题平面化。3.注意下面的转化关系:4.在直接证明有困难时,可考虑间接证法,如同一法和反证法。5.求角与距离的关键是化归。即空间距离与角向平面距离与角化归,各种具体方法如下:(1)求空间

5、中两点间的距离,一般转化为解直角三角形或斜三角形。(2)求点到直线的距离和点到平面的距离,一般转化为求直角三角形斜边上的高;或利用三棱锥的底面与顶点的轮换性转化为三棱锥的高,即用体积法。(3)求异面直线所成的角,一般是平移转化法。方法一是在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线;或过空间任一点分别作两异面直线的平行线,这样就作出了两异面直线所成的角θ,构造一个含θ的三角形,解三角形即可。方法二是补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ。(4)求直线

6、与平面所成的角,一般先确定直线与平面的交点(斜足),然后在直线上取一点(除斜足外)作平面的垂线,再连接垂足和斜足(即得直接在平面内的射影),最后解由垂线、斜线、射影所组成的直角三角形,求出直线与平面所成的角。(5)求二面角,一般有直接法和间接法两种。所谓直接法求二面角,就是作出二面角的平面角来解。其中有棱二面角作平面角的方法通常有:①根据定义作二面角的平面角;②垂面法作二面角的平面角;③利用三垂线定理及其逆定理作二面角的平面角;无棱二面角先作出棱后同上进行。间接法主要是投影法:即在一个平面α上的图形面积为S

7、,它在另一个平面β上的投影面积为S′,这两个平面的夹角为θ,则S′=Scosθ。求角和距离的基本步骤是作、证、算。此外还要特别注意融合在运算中的推理过程,推理是运算的基础,运算只是推理过程的延续。如求二面角,只有根据推理过程找到二面角后,进行简单的运算,才能求出。因此,求角与距离的关键还是直线与平面的位置关系的论证。【例题解析】例1如图7-1,已知正方体ABCD—A1B1C1D1中,E、F、G、H、L、M、N分别为A1D1,A1B1,BC,CD,DA,DE,CL的中点。(1)求证:EF⊥GF;(2)求证:M

8、N∥平面EFGH;(3)若AB=2,求MN到平面EFGH的距离。解(1)如图7-2,作GQ⊥B1C1于Q,连接FQ,则GQ⊥平面A1B1C1D1,且Q为B1C1的中点。在正方形A1B1C1D1中,由E、F、Q分别为A1D1、A1B1、B1C1的中点可证明EF⊥FQ,由三垂线定理得EF⊥GF。(2)连DG和EG。∵N为CL的中点,由正方形的对称性,N也为DG的中点。在△DEG中,由三角形中位线性质得MN∥EG,又E

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。