欢迎来到天天文库
浏览记录
ID:43357831
大小:520.00 KB
页数:16页
时间:2019-10-01
《2014版高考数学(文科)二轮专题突破专题五 第3讲(01)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3讲 圆锥曲线中的热点问题【高考考情解读】 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=
2、0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时
3、,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长
4、P1P2
5、=
6、x2-x1
7、或
8、P1P2
9、=
10、y2-y1
11、,其中求
12、x2-x1
13、与
14、y2-y1
15、时通常使用根与系数的关系,即作如下变形:
16、x2-x1
17、=,
18、y2-y1
19、=.(2)当斜率k不存在时,可求出交点坐标,
20、直接运算(利用两点间距离公式).3.弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.考点一 圆锥曲线的弦长及中点问题例1 已知椭圆G:+=1(a>b>0)的离心率为,右焦点(2,0),斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.解 (1)由已知得c=2,=.解得a=2,又b2=a2-c2=4.所以椭圆G的方程为+=1.(2)设直线l的方程为y=x+m.由得4x2+6mx+3m2-12=0.
21、①设A,B的坐标分别为(x1,y1),(x2,y2)(x122、AB23、=3.此时,点P(-3,2)到直线AB:x-y+2=0的距离d==,所以△PAB的面积S=24、AB25、·d=.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根26、与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.椭圆+y2=1的弦被点平分,则这条弦所在的直线方程是____________.答案 2x+4y-3=0解析 设弦的两个端点为A(x1,y1),B(x2,y2),则x1+x2=1,y1+y2=1.∵A,B在椭圆上,∴+y=1,+y=1.+(y1+y2)(y1-y2)=0,即=-=-,即直线AB的斜率为-.∴直线AB的方程为y-=-,即2x+4y-3=0.考点二 圆锥曲线中的定值、定点问题例2 已知椭圆C:+=1经过点(0,27、),离心率为,直线l经过椭圆C的右焦点F交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为D、K、E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且=λ,=μ,当直线l的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y后可得点A,B的横坐标的关系式,然后根据向量28、关系式=λ,=μ把λ,μ用点A,B的横坐标表示出来,只要证明λ+μ的值与直线的斜率k无关即证明了其为定值,否则就不是定值;(3)先根据直线l的斜率不存在时的特殊情况,看两条直线AE,BD的交点坐标,如果直线AE,BD相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE,BD都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点.解 (1)依题意得b=,e==,a2=b2+c2,∴a=2
22、AB
23、=3.此时,点P(-3,2)到直线AB:x-y+2=0的距离d==,所以△PAB的面积S=
24、AB
25、·d=.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根
26、与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.椭圆+y2=1的弦被点平分,则这条弦所在的直线方程是____________.答案 2x+4y-3=0解析 设弦的两个端点为A(x1,y1),B(x2,y2),则x1+x2=1,y1+y2=1.∵A,B在椭圆上,∴+y=1,+y=1.+(y1+y2)(y1-y2)=0,即=-=-,即直线AB的斜率为-.∴直线AB的方程为y-=-,即2x+4y-3=0.考点二 圆锥曲线中的定值、定点问题例2 已知椭圆C:+=1经过点(0,
27、),离心率为,直线l经过椭圆C的右焦点F交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为D、K、E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且=λ,=μ,当直线l的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y后可得点A,B的横坐标的关系式,然后根据向量
28、关系式=λ,=μ把λ,μ用点A,B的横坐标表示出来,只要证明λ+μ的值与直线的斜率k无关即证明了其为定值,否则就不是定值;(3)先根据直线l的斜率不存在时的特殊情况,看两条直线AE,BD的交点坐标,如果直线AE,BD相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE,BD都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点.解 (1)依题意得b=,e==,a2=b2+c2,∴a=2
此文档下载收益归作者所有