资源描述:
《四川省2019届高三数学下学期(4月)“联测促改”活动试题文(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、四川省2019届高三数学下学期(4月)“联测促改”活动试题文(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则集合()A.B.C.D.【答案】C【解析】【分析】对集合中的不等式进行求解,得到解集后再与集合取交集.【详解】因为集合,所以.故选C项【点睛】本小题考查集合的基本运算,不等式解法、交集等基础知识:考查运算求解能力.2.在复平面内,复数对应的点是,则复数的共轭复数()A.B.C.D.【答案】B【解析】【分析】由题得z=-1+2i,再求复数
2、的共轭复数-1-2i.【详解】由题得z=-1+2i,所以复数的共轭复数-1-2i.故选:B【点睛】本题主要考查复数的几何意义,考查共轭复数的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.函数的最小正周期为,则的图象的一条对称轴方程是()A.B.C.D.【答案】B【解析】【分析】根据函数的最小正周期为求出,再令=,即得函数的对称轴方程.【详解】因为函数的最小正周期为,所以.所以,令=,所以,当k=0时,.故选:B【点睛】本题主要考查三角函数的周期性和对称轴方程的求法,意在考查学生对这些知识的理解掌握水平和分析推
3、理能力.4.下列说法中错误的是()A.从某社区65户高收入家庭,28户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样为分层抽样.B.线性回归直线一定过样本中心点C.若两个随机变量的线性相关性越强,则相关系数的值越接近于D.若一组数据的众数是,则这组数据的中位数是【答案】C【解析】【分析】分别对四个选项进行判断,得到选项为正确,选项错误.【详解】对于,由于各个家庭收入差距明显适于用分层抽样,正确;对于,线性回归直线一定过样本中心点,正确;对于,两个随机变量的线性相关性越强,则相关系数
4、的值越接近于,错误;对于,一组数据、、、的众数是,;所以该组数据的中位数为,正确.故选D项.【点睛】本小题考查分层抽样,线性回归,线性相关,中位数与众数等基础知识,意在考查学生分析问题,及解决问题的能力和运算求解能力.5.若变量,满足约束条件,则的最小值为()A.B.-1C.0D.1【答案】A【解析】【分析】先作出不等式组对应的可行域,再利用斜率求的最小值得解.【详解】由题得不等式组对应的可行域如图所示,表示可行域内的点到定点(4,0)之间的线段的斜率,联立得A(2,3),如图所示,当点位于可行域内的点A(2,3)时,直线的
5、斜率最小,所以的最小值为.故选:A【点睛】本题主要考查线性规划求最值,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.6.设曲线在点处的切线方程为,则()A.0B.1C.2D.3【答案】C【解析】【分析】由题得,再利用求a的值.【详解】由题得.故选:C【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.几何体的三视图如图所示,该几何体的体积为()A.729B.428C.356D.243【答案】D【解析】【分析】先找到三视图对应的几何体,再利用棱锥的体积公式得解.【详解】由题
6、得几何体原图是如图所示的四棱锥P-ABCD,底面是边长为9的正方形,高PA=9,所以几何体的体积为.故选:D【点睛】本题主要考查根据三视图找原图,考查几何体体积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.执行如图所示的程序框图,则输出的值为()A.-1B.0C.D.1【答案】A【解析】【分析】直接模拟程序框图运行得解.【详解】由题得1≤3,S=2,i=2;2≤3,S=2+4,i=3;3≤3,S=2+4+8,i=4;.故选:A【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平和分析推理能力.
7、9.在数列中,已知,且对于任意的,都有,则数列的通项公式为()A.B.C.D.【答案】D【解析】【分析】令m=1得,再利用累加法求数列的通项公式.【详解】令m=1,得,所以.故选:D【点睛】本题主要考查累加法求数列的通项,考查等差数列求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为()A.12B.6C.32D.24【答案】A【解析】【分析】先求出,再求出底面四边形ABCD的面积的最大值,即得锥体体积的最大值.【详解】由
8、锥体的体积公式v=,可知,当s和h都最大时,体积最大.由题得顶点P到底面ABCD的距离h≤2.当点P在底面上的射影恰好为圆心O时,即PO⊥底面ABCD时,PO最大=2,即,此时,即四边形ABCD为圆内接正方形时,四边形ABCD的面积最大,所以此时四边形ABCD的面积的最大值=,所以.故选: