2019-2020年高三5月综合练习(二)数学理试题 含答案

2019-2020年高三5月综合练习(二)数学理试题 含答案

ID:43111528

大小:180.50 KB

页数:8页

时间:2019-09-26

2019-2020年高三5月综合练习(二)数学理试题 含答案_第1页
2019-2020年高三5月综合练习(二)数学理试题 含答案_第2页
2019-2020年高三5月综合练习(二)数学理试题 含答案_第3页
2019-2020年高三5月综合练习(二)数学理试题 含答案_第4页
2019-2020年高三5月综合练习(二)数学理试题 含答案_第5页
资源描述:

《2019-2020年高三5月综合练习(二)数学理试题 含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高三5月综合练习(二)数学理试题含答案数学(理科)学校_____________班级_______________姓名______________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷(选择题共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.集合,,则A.B.C.D.2.已知命题p:x∈R

2、有sinx1,则﹁p为A.B.C.D.3.如图,为正三角形,,底面,若,,则多面体在平面上的投影的面积为A.B.C.D.4.若向量,,满足条件与共线,则的值A.B.C.D.5.成等差数列的三个正数的和等于,并且这三个数分别加上、、后成为等比数列中的、、,则数列的通项公式为A.B.C.D.6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠劵1:若标价超过50元,则付款时减免标价的10%;优惠劵2:若标价超过100元,则付款时减免20元;优惠劵3:若标价超过100

3、元,则超过100元的部分减免18%。若顾客购买某商品后,使用优惠劵1比优惠劵2、优惠劵3减免的都多,则他购买的商品的标价可能为A.179元  B.199元  C.219元 D.239元7.已知函数则的值为A.B.C.D.8.集合,若,已知,定义集合中元素间的运算,称为运算,此运算满足以下运算规律:①任意有②任意有(其中)③任意,有④任意有,且成立的充分必要条件是为向量.如果,那么下列运算属于正确运算的是A.B.C.D.第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.设是虚数单位,复数所对应的点在第一象限,则实数的取

4、值范围为___.10.设变量x,y满足约束条件,则目标函数的最大值为.11.已知直线与直线相交于点,又点,则.12.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图.则产品数量位于范围内的频率为_____;这20名工人中一天生产该产品数量在的人数是   .13.若点和点分别为双曲线(>0)的中心和左焦点,点为双曲线右支上的任意一点,则的取值范围为___.14.已知函数,关于此函数的说法正确的序号是__.①为周期函数;②有对称轴;③为的对称中心;④.三、解答题(本

5、大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题共13分)已知函数(),且函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值.16.(本小题共14分)如图,是等腰直角三角形,,分别为的中点,沿将折起,得到如图所示的四棱锥(Ⅰ)求证:;(Ⅱ)当四棱锥体积取最大值时,(i)若为中点,求异面直线与所成角;(ii)在中交于,求二面角的余弦值.17.(本小题共13分)在xx赛季联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数,表示投篮次数,表示命中次数),假设各场比赛相互独立

6、.场次球员甲乙根据统计表的信息:(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.18.(本小题共14分)已知,.(Ⅰ)求的单调区间;(Ⅱ)当时,求证:对于,恒成立;(Ⅲ)若存在,使得当时,恒有成立,试求的取值范围.19.(本小题共13分)已知椭圆过点(,),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形

7、.(Ⅰ)求椭圆的标准方程;(Ⅱ)设是椭圆上的动点,是轴上的定点,求的最小值及取最小值时点的坐标.20.(本小题共13分)数列中,定义:,.(Ⅰ)若,,求;(Ⅱ)若,,求证此数列满足;(Ⅲ)若,且数列的周期为4,即,写出所有符合条件的.北京市东城区xx学年度第二学期高三综合练习(二)数学参考答案及评分标准(理科)第Ⅰ卷(选择题共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.B2.C3.A4.D5.A6.C7.A8.D第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.10.11.12..13.14.①②④

8、三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)因为,又的最小正周期为,所以,即=2.----------------------------------

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。