基于仪表放大器电路设计

基于仪表放大器电路设计

ID:43108283

大小:364.50 KB

页数:5页

时间:2019-09-26

基于仪表放大器电路设计_第1页
基于仪表放大器电路设计_第2页
基于仪表放大器电路设计_第3页
基于仪表放大器电路设计_第4页
基于仪表放大器电路设计_第5页
资源描述:

《基于仪表放大器电路设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、基于仪表放大器电路设计  摘要:仪表放大器电路以其高输入阻抗、高共模抑制比、低漂移等特点在传感器输出的小信号放大领域得到了广泛的应用。在阐述仪表放大器电路结构、原理的基础上,基于不同电子元器件设计了四种仪表放大器电路实现方案。通过仿真与实际电路性能指标的测试、分析、比较,总结出各种电路方案的特点,为电路设计初学者提供一定的参考借鉴。广告插播信息维库最新热卖芯片:PZT2222A TDA3613T S16MD01 MC6875L LP2982AIM5X-3.8 AS7C512-15JC AD2S80AKD MX29L1611MC-1

2、0 IPS021L UTC386   0引言  智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号范围。本文从仪表放大器电路的结构、原理出发,设计出四种仪表放大器电路实现方案,通过分析、比较,给出每一种电路方案的特点,为电

3、路设计爱好者、学生进行电子电路实验提供一定的参考。  1仪表放大器电路的构成及原理  仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而

4、使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。由公式可见,电路增益的调节可以通过改变Rg阻值实现。  2仪表放大器电路设计  2.1仪表放大器电路实现方案  目前,仪表放大器电路的实现方法主要分为两大类:第一类由分立元件组合而成;另一类由单片集成芯片直接实现。根据现有元器件,文中分别以单运放LM741和OP07,集成四运放LM324和单片集成芯片AD620为核心,设计出四种仪表放大器电路方案。  方案1由3个通用型

5、运放LM741组成三运放仪表放大器电路形式,辅以相关的电阻外围电路,加上A1,A2同相输入端的桥式信号输入电路,如图2所示。  图2中的A1~A3分别用LM741替换即可。电路的工作原理与典型仪表放大器电路完全相同。方案2由3个精密运放OP07组成,电路结构与原理和图2相同(用3个OP07分别代替图2中的A1~A3)。  方案3以一个四运放集成电路LM324为核心实现,如图3所示。它的特点是将4个功能独立的运放集成在同一个集成芯片里,这样可以大大减少各运放由于制造工艺不同带来的器件性能差异;采用统一的电源,有利于电源噪声的降低和电

6、路性能指标的提高,且电路的基本工作原理不变。方案4由一个单片集成芯片A13620实现,如图4所示。它的特点是电路结构简单:一个AD620,一个增益设置电阻Rg,外加工作电源就可以使电路工作,因此设计效率最高。图4中电路增益计算公式为:G=49.4K/Rg+1。  2.2性能测试与分析  实现仪表放大器电路的四种方案中,都采用4个电阻组成电桥电路的形式,将双端差分输入变为单端的信号源输入。性能测试主要是从信号源Vs的最大输入和Vs最小输入、电路的最大增益及共模抑制比几方面进行仿真和实际电路性能测试。测试数据分别见表1和表2。其中,V

7、s最大(小)输入是指在给定测试条件下,使电路输出不失真时的信号源最大(小)输入;最大增益是指在给定测试条件下,使输出不失真时可以实现的电路最大增益值。共模抑制比由公式KCMRR=20

8、g

9、AVd/AVC

10、(dB)计算得出。  说明:  (1)f为Vs输入信号的频率;  (2)表格中的电压测量数据全部以峰峰值表示;  (3)由于仿真器件原因,实验中用Multisim对方案3的仿真失效,表1中用“-”表示失效数据;  (4)表格中的方案1~4依次分别表示以LM741,OP07,LM324和AD620为核心组成的仪表放大器电路。  由表

11、1和表2可见,仿真性能明显优于实际测试性能。这是因为仿真电路的性能基本上是由仿真器件的性能和电路的结构形式确定的,没有外界干扰因素,为理想条件下的测试;而实际测试电路由于受环境干扰因素(如环境温度、空间电磁干扰等)、人为操作因素、实际测试仪器精确度

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。