资源描述:
《mcm美国大学生数学建模竞赛模板-公式》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、由假设得到公式1•WeassumelaminarflowanduseBernoulli'sequation:(由假设得到的公式)公式Where符号解释Accordingtotheassumptions,ateveryjunctionvvehave(由于假设)公式由原因得到公式2.Becauseourfieldisflat,wehave公式,sotheheightofoursourcerelativetooursprinklersdoesnotaffecttheexitspeedv2(由原因得到的公式);公式Sincethefluidisincompressible(由于液体是
2、不可压缩的),wehave公式Where公式用原来的公式推出公式3.Pluggingvlintotheequationforv2,weobtain(将公式1代入公式2丨11得到)公式11.Puttingthesetogether(把公式放在•起),becauseofthelawofconservationofenergy,yields:[]公式12.Therefore,from(2),(3),(5),wehavetheithjunction(由前几个公式得)公式Putting(1)-(5)together,wecanobtainpupateveryjunction.Infac
3、t,atthelastjunction,wehave公式Puttingtheseinto(1),wcget(把这些公式代入1中)公式WhichmeansthattheCommonly,hisaboutFromtheseequations,(从这个公式屮我们知道)weknowthat引出约束条件4.UsingpressureanddischargedatafromRainBird结果,Wefindtheattenuationfactor(得到衰减因子,常数,系数)tobe公式计算结果6.Tofindthenewpressure,weusethe(00),whichstatest
4、hatthevolumeofwaterflowinginequalsthevolumeofwaterflowingout:(为了找到新值,我们用什么方程)公式Where0is;;6.SolvingforVNweobtain(公式的解)Wherenisthe6.Wehavethefollowingdifferentialequationsforspeedsinthex・andy-directions:公式Whosesolutionsare(解)公式7.Weusethefollowinginitialconditions(便用初值)todeterminethedragconsta
5、nt:公式根据原有公式8.Weapplythelawofconservationofenergy(根据能量守恒定律).Theworkdonebytheforcesis公式Thedecreaseinpotentialenergyis(势能的减少)公式Theincreaseinkineticenergyis(动能的增加)公式Drugactsdirectlyagainstvelocity,sotheaccelerationvectorfromdragcanbefoundNewtonlawF=maas:(牛顿第二定律)Whereaistheaccelerationvectorand
6、mismassUsingtheNewton'sSecondLaw,wehavethatF/m=aand公式Sothat公式Settingthetwoexpressionsfortl/t2equalandcross-multiplyinggives公式22.Wcapproximatethebinomialdistributionofcontenderswithanormaldistribution:公式Wherexisthecumulativedistributionfunctionofthestandardnormaldistribution.Clearingdenomina
7、torsandsolvingtheresultingquadraticinBgives公式Asananalyticapproximationto.fork=1,wegetB=c26.Integrating,(使结合)wegetPVT=constant,where公式Themaincompositionoftheairisnitrogenandoxygen,soi=5andr=l.4,so23.AccordingtoFirstLawofThermodynamics,weget公式Where().weals