资源描述:
《【数学】2014版《6年高考4年模拟》:第十一章 统计、统计案例》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【数学】2014版《6年高考4年模拟》第十一章统计、统计案例第一部分六年高考荟萃2013年高考题.(2013年高考陕西卷(理))某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A.11B.12C.13D.14答案:B使用系统抽样方法,从840人中抽取42人,即从20人抽取1人。,所以从编号1~480的人中,恰好抽取24人,接着从编号481~720共240人中抽取12人。故选B.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯W
2、ORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数答案:C对A选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A选项错。对B选项,系统抽样要求先对个体进行编号再抽样,所以B选项错。对C选项,男
3、生方差为40,女生方差为30。所以C选项正确。对D选项,男生平均成绩为90,女生平均成绩为91。所以D选项错。所以选C.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A.588B.480C.450D.120答案:B由图知道60分以上人员的频率
4、为后4项频率的和,由图知道故分数在60以上的人数为600*0.8=480人..(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816657208026314070243699728019832049234493582003623486969387481( )A.08B.07C.02D.01答案:D本题考查随机数的使用和求值。从随机数表第1行的第5列和第6列数字开始由左到右依次选
5、取两个数字中小于20的编号依次为08,02,14,07,02,01,。其中第二个和第四个都是02,重复。所以第5个个体的编号为01。故选D。.(2013年高考上海卷(理))盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)答案:.【解答】9个数5个奇数,4个偶数,根据题意所求概率为..(2013年高考湖北卷(理))从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中的值为_________
6、__;(II)在这些用户中,用电量落在区间内的户数为_____________.答案:(Ⅰ);(Ⅱ)70本题考查频率分布直方图,以及利用样本估计总体。(Ⅰ)第一组的频率为,第二组的频率为,第三组的频率为,第五组的频率为,第六组的频率为,所以第四组的频率为,所以。(Ⅱ)落在[100,250]内的户数为第二,三,四组数据,所以。.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918
7、892则成绩较为稳定(方差较小)的那位运动员成绩的方差为_____________.答案:2易知均值都是90,乙方差较小,.(2013年高考上海卷(理))设非零常数d是等差数列的公差,随机变量等可能地取值,则方差答案:.【解答】,..(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))某车间共有名工人,随机抽取名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.第17题图(Ⅰ)根据茎叶图计算样本均值;(Ⅱ)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;(Ⅲ)从该车间名工人中
8、,任取人,求恰有名优秀工人的概率.解:(1)由题意可知,样本均值(2)样本6名个人中日加工零件