欢迎来到天天文库
浏览记录
ID:42959730
大小:86.50 KB
页数:4页
时间:2019-09-24
《§14.3.1提公因式法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、14.3.1提公因式法(一) 一、教学目标1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.2.使学生理解提公因式法并能熟练地运用提公因式法分解因式.3.树立学生“化零为整”的“化归”的数学思想,培养学生完整地、辩证地看问题的思想.4.树立学生全面分析问题、认识问题的思想,提高学生的观察能力、分析问题及逆向思想的能力.二、教学重点及难点1.教学重点:因式分解的概念及提公因式法.2.教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.三、教学方法理论与实例相结合.四、教学手段设问式、启发式.五、教学过程(一)
2、复习提问1.乘法对加法的分配律.2.添括号法则.(二)新课1.新课引入:用类比的方法引入课题.在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.在代数里学习分式的时候,也常常要进行约分、通分,因此要常常把一个多项式化成几个整式的乘积.在中学里一元高次(二次以上)方程的求解正是根据在实数域上,实系数多项式总可以分解为一次或二次不可约多项式的乘积,那么相应的一元高次方程可以化为一次或二次方程求解.又如一元高次不等式的解法,也是基于一次、二次不等式的解法.将高次不等式化为一、
3、二次不等式组解.因此从知识内容看,把一个多项式恒等变形成几个因式乘积是十分重要的.这一章就是学习如何把一个多项式化成几个整式的积的方法.2.因式分解的概念:请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.)如:m(a+b+c)=ma+mb+mc2xy(x-2xy+1)=2x2y-4x2y2+2xy(a+b)(a-b)=a2-b2(a+b)(m+n)=am+an+bm+bn(x-5)(2-x)=-x2+7x-10等等.再请学生观察它们有什么共同的特点?特点:左边,整式×整式;右边,是多项式
4、.第4页共4页可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.如:因式分解:ma+mb+mc=m(a+b+c).整式乘法:m(a+b+c)=ma+mb+mc.让学生说出因式分解与整式乘法的联系与区别.联系:同样是由几个相同的整式组成的等式.区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形.因式分解的特征是和差化积的形式,乘法的特征是积化和差的形式
5、.例1 下列各式从左到右哪些是因式分解?(1)x2-x=x(x-1) (√)(2)a(a-b)=a2-ab (×)(3)(a+3)(a-3)=a2-9 (×)(4)a2-2a+1=a(a-2)+1
6、 (×)(5)x2-4x+4=(x-2)2 (√)下面我们学习几种常见的因式分解方法.3.提公因式法:我们看多项式:ma+mb+mc请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.注意:公因式是各项都含有的公共的因式.又如:a是多项式a2-a各项的公因式.ab是多项式5a2b-ab2各项的公因式.2mn是多项式4m2np-2mn2q各项的公因式.根据乘法的分配律,可得m(a+b+c)=ma+mb+mc,逆变形,便得到多项
7、式ma+mb+mc的因式分解形式ma+mb+mc=m(a+b+c).这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法.定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.第4页共4页显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母
8、的指数取次数例2指出下列各多项式中各项的公因式:(1)ax+ay+a
此文档下载收益归作者所有