第五讲 相关分析

第五讲 相关分析

ID:42930708

大小:81.50 KB

页数:11页

时间:2019-09-25

第五讲 相关分析_第1页
第五讲 相关分析_第2页
第五讲 相关分析_第3页
第五讲 相关分析_第4页
第五讲 相关分析_第5页
资源描述:

《第五讲 相关分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第十章相关分析10.1相关分析的概念和相关分析过程10.2两个变量间的相关分析10.3偏相关分析10.4距离分析7/23/202110.1.1相关分析的概念研究变量间密切程度的一种常用统计方法1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述。(详见下面)2、偏相关分析:它描述的是当控制了一个或几个另外的变量的影响条件下两个变量间的相关性,如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系3、相似性测度:两个或若干个变量、两个或两组观测量之间的关系有时也可以用相似性或不相似性来描述。相似性测度用大值表示很相似,而不相

2、似性用距离或不相似性来描述,大值表示相差甚远线性相关分析研究两个变量间线性关系的程度。相关系数是描述这种线性关系程度和方向的统计量,用r表示。如果变量Y与X间是函数关系,则r=1或r=-1;如果变量Y与X间是统计关系,则-10,如果x,y变化的方向相反,如吸烟与肺功能的关系,则称为负相关,r<0;而r=0表示无线性相关,一般地,

3、r

4、>0.95存在显著性相关;

5、r

6、0.8高度相关;0.5

7、r

8、<0.8中度相关;0.3

9、r

10、<0.5低度相关;

11、r

12、<0.3关系极弱,认为不

13、相关线性相关分析(续)相关系数的计算有三种:Pearson、Spearman和KendallPearson相关系数:对定距变量的数据进行计算,公式P207Spearman和Kendall相关系数:对分类变量的数据或变量值的分布明显非正态或分布不明时,计算时先对离散数据进行排序或对定距变量值排(求)秩。公式P20810.1.2相关分析的SPSS过程在Analyze+Correlate下的三个子菜单:1、Bivariate--相关分析,计算指定的两个变量间的相关关系,可选择Pearson相关、Spearman和Kendall相关;同时对相关系数进行检验

14、,检验的零假设为:相关系数为0(不相关)。给出相关系数为0的概率2、Partial--偏相关分析,计算两个变量间在控制了其他变量的影响下的相关关系,对相关系数也进行检验,检验的零假设为:相关系数为03、Distance--相似性测度,对变量或观测量进行相似性或不相似性测度7/23/202110.2两个变量间的相关分析两两变量间的相关:包括两个连续变量间的相关(Pearson相关)和两个等级(分类)变量间的秩相关(Spearman和Kendall相关)菜单:Analyze+Correlate+Bivariatea、连续变量间的相关:Pearson。P

15、210Data10-01:1962年-1988年安徽省国民收入与城乡居民储蓄存款余额两个变量间的线性相关分析(income:国民收入,deposit:城乡居民储蓄存款余额,number:序号,year:年份)。比较有用的结果:Pearson相关系数r=.976和其相应的显著性概率Sig=.000(显然国民收入与存款余额之间是高度相关的)P211Data07-03银行职工的起始工资salbegin和现工资salary与雇员本人各方面条件的关系(年龄age、工作时间jobtime、以前工作经验prevexp):比较有用的结果:Pearson相关系数r和

16、其相应的显著性概率Sig(Pearson相关系数均很小)7/23/202110.2两个变量间的相关分析(续)b、等级(分类)变量间的秩相关:Spearman和Kendall。P212Data07-03银行职工的起始工资salbegin和现工资salary与雇员的职务等级jobcat、受教育程度educ关系(比较有用的结果:Kendall秩相关系数r和其相应的显著性概率Sig(Kendall秩相关系数均>.5,认为中度相关)P213Data10-02某次全国武术女子前10名运动员长拳和长兵器两项得分数据,要求分析这两项得分是否存在线性相关(比较有用的

17、结果:秩相关系数r和其相应的显著性概率Sig(秩相关系数均>.5,认为中度相关)7/23/202110.3偏相关分析的概念P218线性相关分析计算两个变量间的相关关系,分析两个变量间线性关系的程度。往往因为第三个变量的作用,使相关系数不能真正反映两个变量间的线性程度。如身高、体重与肺活量之间的关系。如果使用Pearson相关计算其相关系数,可以得出肺活量与身高和体重均存在较强的线性关系。但实际上,如果对体重相同的人,分析身高和肺活量,是否身高越高,肺活量就越大呢?不是的。原因是身高与体重有线性关系,体重与肺活量存在线性关系,因此得出身高和肺活量之间

18、存在着较强的线性关系的错误结论。偏相关分析的任务就是在研究两个变量之间的线性相关关系时控制可能对其产生影响的变量。分析身高

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。