提公因式法教学设计 (2)

提公因式法教学设计 (2)

ID:42882257

大小:36.50 KB

页数:5页

时间:2019-09-23

提公因式法教学设计 (2)_第1页
提公因式法教学设计 (2)_第2页
提公因式法教学设计 (2)_第3页
提公因式法教学设计 (2)_第4页
提公因式法教学设计 (2)_第5页
资源描述:

《提公因式法教学设计 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、14.3.1提公因式法  一、教材分析:  (一)教材所处的地位  这节课是九年制义务教育课程标准实验教科书八年级上册《提公因式法》第一课时。学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学

2、习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用  (二)根据课程标准,本课的教学目标是:  A:知识目标:  1、经历探索分解因式方法的过程,体会数学知识之间的整体(整式乘法与因式分解)联系.  2、了解因式分解的意义,会用提公因式法进行因式分解.  B:能力目标: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想

3、方法  C:情感目标:  培养学生独立思考的习惯,同时又要培养大家合作交流意识。  二、本课内容及重点、难点分析: 根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式x2-25和9x2-y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘

4、法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力5/53、教学重点、难点根据八年级学生的认知规律和知识基础,结合本节课的内容以及新课程标准确定本节课的重点为:(1)学生能确定多项式中各项的公因式;(2)学生能用提公因式法把多项式分解因式。难点为:正确找出多项式中各项的公因式及提公因式后另一个因式的确定。二、学情分析学情是教师确定教学重点,难点,选择教学方法和手段的依据,本节课学情主要有:1、学生已经学习了整式乘法及因式分解的意义,有了初步的逆变形思维具备一定的分析、判断和运用法则的意义,对

5、乘法的分配律也得到了进一步的理解。2、八年级学生好奇心强,对新内容感兴趣,但学习急于求成,同时主动性和目地性不够明确,学习方法还比较欠缺,特别是符号问题,这对学生学习本节课内容带来一定的难度,因此,在教学中教师要对他们进行学法指导,尤其要对他们进行数学学习方法和数学思想的培养。三、教学方法分析根据本节课内容,遵循学生认知规律和心理特点,为了突出重点,突破难点,培养学生的创新能力,我采用演示、讨论、观察、比较、概括等多种方法交叉教学,利用多媒体辅助教学,呈现知识的形成过程,充分调动多种感官参与教学,激发学生学

6、习的兴趣,使数学教学成为学生“探索、发现、再发现、创造”的过程。四、学法分析教学的矛盾主要是解决学生的学,“学”是中心,“会”是目的。因此,在教学过程中,我通过创设问题的情境,以激发学生“乐学”;启发诱导,以指导学生“会学”;变式训练,以引导学生“活学”;引导学生反思自己的分析过程,以指导学生“善学”。使学生通过观察、比较、分析、概括等一系列思维训练,不断提高学习数学的探究意识和创新能力。五、教学过程本节课的教学过程由五个环节组成:(一)创设情境,导入新课;5/5(二)师生合作,探究新知;(三)反馈练习,巩

7、固新知;(四)引导小结,巩固提高;(五)布置作业,形成技能。教学过程设计:一、复习提问  乘法对加法的分配律.二、新课1.新课引入:用类比的方法引入课题.  在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把12分解成3×4,把6分解成2×3。在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.2.因式分解的概念:1.分析讨论,探究新知.出示投影片把下列多项式写

8、成整式的乘积的形式(1)x2+x=_________(2)x2-1=_________(3)am+bm+cm=__________[生]根据整式乘法和逆向思维原理,可以做如下计算:(1)x2+x=x(x+1)(2)x2-1=(x+1)(x-1)(3)am+bm+cm=m(a+b+c)[师]像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.可以看出因式分解是整式乘法的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。