《三角形的中位线定理》教学设计

《三角形的中位线定理》教学设计

ID:42821817

大小:29.50 KB

页数:5页

时间:2019-09-21

《三角形的中位线定理》教学设计_第1页
《三角形的中位线定理》教学设计_第2页
《三角形的中位线定理》教学设计_第3页
《三角形的中位线定理》教学设计_第4页
《三角形的中位线定理》教学设计_第5页
资源描述:

《《三角形的中位线定理》教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《三角形的中位线定理》教学设计教学目标(一)知识目标(1)理解三角形中位线的概念(2)会证明三角形的中位线定理(3)能应用三角形中位线定理解决相关的问题;(二)过程与方法目标进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。(三)情感目标通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。3、重点与难点重点:理解并应用三角形中位线定理。难点:三角形中位线定理的证明和运用。【教学方法】学生在前面的数学学习中具有了一定的合作学习

2、的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学,我始终贯彻“教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、比较、分析和总结,使学生充分地参与教学全过程。【教学过程】本节课分为五个环节:设景激趣,引入新课概念学习,感悟新知拼图活动,探索定理巩固练习,作业布置(一)设景激趣,导入新课为了测量广场上的小假山外围圆形的宽(不能直接测量)在平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出宽BC。你知道这是为什么吗?设计意图:问题是一切学习探究的先父,教材中创设的问题情境难度较大,学生不容易突

3、破。这里创设了一个现实情景,在这里教师不急予让学生找出答案,而是让学生带着问题去学习。为了让学生主动的获得新知,先让学生动手做以下一个环节的动手操作活动。(二)概念学习(引导探究,获得新知)1、动手实践探索请您做一做(让学生拿出自己预先准备好的三角形纸板):1、找出三边的中点.2、连接6点中的任意两点.3、找找哪些线是你已经学过的,哪些是未曾学过的.设计意图:在本环节,让学生经过动手操作,学生会发现有3条是已经学过的中线,有3条是没有学过的。最终给出三角形中位线的定义。也引出了本节课的课题:三角形的中位线。这样做,既让学生得出三角形中位线的概念又让学生在无形中区分了三角

4、形的中线和三角形中位线.2、三角形中位线的定义:连接三角形两边中点的线段,叫做三角形的中位线如图,DE、EF、DF是三角形的3条中位线。跟踪训练:①如果D、E分别为AB、AC的中点,那么DE为△ABC的;②如果DE为△ABC的中位线,那么D、E分别为AB、AC的设计意图:学以致用,为了及时的使学生加深三角形中位线的概念印象,为后面的探究打下基础,设立了以上两道简单的抢答题,让学生学会及时的从图中找出信息。(三)拼图活动、探索定理(用时大概5分钟)整个的拼图游戏我设计了以下两个问题:问题一:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?问题二:猜想得

5、出平行四边形后,简述证明过程。设计意图:这个时候学生会拿出自己已经准备好的三角形纸板进行反复剪拼,并交流。这样处理教材是为了分散难点,中位线定理证明对于学生来说有一定的难度,主要是为后面猜想三角形中位线定理并证明定理而作下铺垫的,这里体现了新的知识是建立在学生已有认识的基础上,也更大的激发学生动手实践探索的主动性。2.简述证明过程已知:如图,DE是△ABC的中位线,求证:四边形DBCF是平行四边形.证明:如图,∵△ADE≌△CFE∴AD=CF,∠ADE=∠F∴BD∥CF∵AD=BD∴BD=CF∴四边形BCFD是平行四边形建议处理办法:充分交流之后让小组同学上来展示自己的

6、剪拼法,并简述自己的理由.2、乘胜追击,猜想得出定理DE是△ABC的中位线,请想一想:①DE与BC有怎样的位置关系?②DE与BC有怎样的数量关系?为什么?设计意图:(让学生去猜测,去说,去发现,主要还是让学生独立思考,说出自己的猜想)这个时候也许有些学生会通过用尺子量,观察的直观办法得出定理,有些学生可能会通过全等三角形的性质,平行四边形的性质去理性得出定理的办法。这个时候教师要给予学生一个充分的交流和探索时间。学生通过合作学习,彼此互相启发,共同研究,能够自己解决这一问题。从而猜想得出三角形的中位线定理,并为定理的证明打下基础。引导得出定理如下:三角形中位线定理:三角

7、形的中位线平行于第三边(位置关系),并且等于第三边的一半(数量关系)。活动效果:注意:引导学生去欣赏数学的简洁美,引导学生用简单的符号、图形语言去表达深刻的定理。4、验证、明确结论证法:延长DE至F,使EF=DE,连接CF∵AE=CE,∠AED=∠CEF,∴△ADE≌△CFE∴AD=CF,∠ADE=∠F∴BD∥CF∵AD=BD∴BD=CF∴四边形BCFD是平行四边形∴DF∥BC,DF=BC∴DE∥BC,DE=活动效果:有了前面的交流活动,学生要证明三角形的中位线定理思路就清晰多了,只是怎样做辅助线又是学生学习的一个难点。这时候,不要生硬的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。