27.3 平面直角坐标系中的位似(课时2)

27.3 平面直角坐标系中的位似(课时2)

ID:42814787

大小:46.00 KB

页数:4页

时间:2019-09-21

27.3 平面直角坐标系中的位似(课时2)_第1页
27.3 平面直角坐标系中的位似(课时2)_第2页
27.3 平面直角坐标系中的位似(课时2)_第3页
27.3 平面直角坐标系中的位似(课时2)_第4页
资源描述:

《27.3 平面直角坐标系中的位似(课时2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、27.3 平面直角坐标系中的位似(课时2)教学目标:知识与技能1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.过程与方法会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小,体会数形结合的思想.重点难点重点用图形的坐标的变化来表示图形的位似变换.难点把一个图形按一定比例放大或缩小后,掌握点的坐标变化的规律.教学设计一、问题引入1.什么是位似

2、图形?(如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.)2.如图,以点O为位似中心,将△ABC放大为原来的两倍.二、新课教授在前面,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.下面我们来研究如何表示.活动1:(1)如图(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段AB缩小,观察对应点之间坐标的变化,

3、你有什么发现?(2)如图(2),△ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?学生小组讨论,共同交流,回答问题.解:可以看出,图(1)中把AB缩小后,A,B两点的对应点分别为A′(2,1),B′(2,0);A″(-2,-1),B″(-2,0).图(2)中,作图略.将△ABC放大后,A,B,C对应的点分别为A′(4,6),B′(4,2),C′(12,4);A″(-4,-6),B″(-4,-2),C″(-12,-4).归纳位似

4、变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.活动2:如图,△ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2).①将△ABC向左平移三个单位得到△A1B1C1,写出A1,B1,C1三点的坐标;②写出△ABC关于x轴对称的△A2B2C2的三个顶点A2,B2,C2的坐标;③将△ABC绕点O旋转180°得到△A3B3C3,写出A3,B3,C3三点的坐标.①将△ABC向左平移三个单位得到△A1B1C1,则A1(-1,3),B1(-

5、1,1),C1(3,2);②△ABC关于x轴对称的△A2B2C2三个顶点坐标分别为A2(2,-3),B2(2,-1),C2(6,-2);③将△ABC绕点O旋转180°得到△A3B3C3,则A3(-2,-3),B3(-2,-1),C3(-6,-2).三、例题讲解例 如图,四边形ABCD四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4).画出它的—个以原点O为位似中心、相似比为的位似图形.解法一:如上图,利用位似变换中对应点的坐标的变化规律,分别取点A′(-3,3),B′(-4,1),C′(-2,0)

6、,D′(-1,2).依次连接点A′,B′,C′,D′,四边形A′B′C′D′就是要求作的四边形ABCD的位似图形.解法二:点A的对应点A″的坐标为(-6×(-),6×(-)),即A″(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)四、巩固练习1.在平面直角坐标系中,已知点A(3,4),B(-4,3),以原点O为位似中心,相似比为2,将△OAB放大为△OA′B′,则对应点A′,B′的坐标分别为________.答案 A′(6,8),B′(-8,6)或A′(-6,-8),B′(8,-6).2.如图,以某点为位似中心

7、,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为(  )A.(0,0),2     B.(2,2),C.(2,2),2D.(2,2),3答案 C五、课堂小结本节课首先巩固位似图形及其有关概念方面的知识,要求学生会用图形坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律;了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.教学反思关于位似图形的概念,教学中应注意解释:几何变换、相似变换、位似变换三者之间的关系.相

8、似变换是特殊的几何变换,位似变换又是特殊的相似变换,位似图形是具有特殊位置关系的相似图形.四种变换中,平移、轴对称、旋转都是保距变换,变换前后图形全等.而相似变换(包括位似变换)前后得到的图形不一定全等,是保角变换.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。