21.2.2 公式法

21.2.2 公式法

ID:42808029

大小:229.00 KB

页数:4页

时间:2019-09-21

21.2.2  公式法_第1页
21.2.2  公式法_第2页
21.2.2  公式法_第3页
21.2.2  公式法_第4页
资源描述:

《21.2.2 公式法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、21.2.2公式法【知识与技能】1.理解并掌握求根公式的推导过程;2.能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.一、情境导入,初步认识我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax2+bx+c=0的形式,我们是否也能用

2、配方法求出它的解呢?想想看,该怎样做?让学生回顾用配方法解一元二次方程的一般过程,从而尝试着求ax2+bx+c=0(a≠0)的方程的解,导入新课,教学时,应给予足够的思考时间,让学生自主探究.二、思考探究,获取新知通过问题情境思考后,师生共同探讨方程ax2+bx+c=0(a≠0)的解.由ax2+bx+c=0(a≠0),移项,ax2+bx=-c.二次项系数化为1,得x2+x=-.配方,得x2+x+=-+,即.至此,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么?(2)你认为下一步该怎么办?谈谈你的看法.师生共同完善认知:

3、一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用Δ表示,即Δ=b2-4ac.从而有:①当Δ=b2-4ac>0时,方程ax2+bx+c=0(a≠0)有两个不相等的实数根;当Δ=b2-4ac=0时,方程ax2+bx+c=0(a≠0)有两个相等实数根;当Δ=b2-4ac<0时,方程ax2+bx+c=0(a≠0)没有实数解;②当Δ≥0时,方程ax2+bx+c=0(a≠0)的两个实数根可写成x=,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.三、典例精析,掌握新知例2用公式法解下列方程:(1)x2-4x-7

4、=0;(2)2x2-2x+1=0;(3)5x2-3x=x+1;(4)x2+17=8x分析:将方程化为一般形式后,找出a、b、c的值并计算b2-4ac后,可利用公式求出方程的解.四、运用新知,深化理解教材第12页练习1.解下列方程:(1)x2+x-6=0;(2)x2-x-14=0;(3)3x2-6x-2=0;(4)4x2-6x=0;(5)x2+4x+8=4x+11;(6)x(2x-4)=5-8x.2.无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出你的答案并说明理由.五、师生互动,课堂小结①当Δ=b2-4ac>0时,方程ax2+b

5、x+c=0(a≠0)有两个不相等的实数根;当Δ=b2-4ac=0时,方程ax2+bx+c=0(a≠0)有两个相等实数根;当Δ=b2-4ac<0时,方程ax2+bx+c=0(a≠0)没有实数解;②当Δ≥0时,方程ax2+bx+c=0(a≠0)的两个实数根可写成x=1.布置作业:习题21.2中5.(2)(4)(6)2.完成练习本”导学案”中P6-7部分.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。