bobb,b>coa>c(3)同力『性:a>b^a+m>b+m(3)乘法性:a>b,c〉0=>qc〉bea>b,c=0nde=bea>byc bobb,b>coa>c(3)同力『性:a>b^a+m>b+m(3)乘法性:a>b,c〉0=>qc〉bea>b,c=0nde=bea>byc
广东省3+证书数学公式大全

广东省3+证书数学公式大全

ID:42775606

大小:712.55 KB

页数:25页

时间:2019-09-21

广东省3+证书数学公式大全_第1页
广东省3+证书数学公式大全_第2页
广东省3+证书数学公式大全_第3页
广东省3+证书数学公式大全_第4页
广东省3+证书数学公式大全_第5页
资源描述:

《广东省3+证书数学公式大全》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第二章主要公式一、不等式的性质⑴对称"性:a>bobb,b>coa>c(3)同力『性:a>b^a+m>b+m(3)乘法性:a>b,c〉0=>qc〉bea>b,c=0nde=bea>bycb>0=>an>bn(5)开方性:a〉b>0=丽〉阪⑹倒数性:a>b9ab>0^-<-ab二、均值定理1、(1)如果积xy是定值R那么当x=y吋,和兀+y有最小值2“;(2)如果和x+y是定值S,那么当尸y时,积弓有最大值扌Si三、不等式的解法1、一元二次不等式的解题模板(1)不等式-2x2+30+7x<0军a=2

2、,b=-7,c=-30A=/?2-4ac=289>0所以方程2#-7/-30二0的两根为k二-2,禺二6・2原不等式的解集为或06}・2(1)

3、3兀-4

4、W19的解法解:

5、3x-4

6、^19O・19W3x・4W19O・15W3xW2323O-5

7、-5

8、2x-4

9、>10的解法解:

10、2x-4

11、>10<=>2兀・4>10或2x・4v・10Ox>7或x<-323听以原不等式的解集为{x-5

12、3・・・原不等式的解集为(-00,

13、)(2+00)O乙-4qc=49>0所以方程2/-7^-30=0的两根为^i=-1,x2~.原不等式的解集为322>绝对值不等式的解题模板3、分式不等式的解题模板例1:解不等式半<02-3x解法一:不等式o(2x-3)(2-3劝<0o(2x—3)(3x—2)>032(2兀-3)(3兀-2)二0的根是—,一23?3・•・原不等式的解集为(-oo,

14、)(£+oo)例厶解不等式%8<24~x「兀_8解:原不等式化为:4-x2~°4-x^0x-d.x.x+d•••原不等式的解集为:(-00,4)[斗,+8)4、根式不等式的解

15、法例:解不等式J3无_4_>0解:原不等式o丁3无_4〉V7X3x-4>0ovx-3>03x—4>x—34x>-3x>3・•・原不等式的解集是[3,+°o)例:解不等式丁9/+6兀+1<29x2+6x+1>09x2+6x+1<4解:原不等式oxwR—1a}(為+00)

16、—CSL{xx>a}■冬+00)■—1a{xx0注意:如果一个函数中同时有分式、偶次根式对数式等,则要列出使函数表达式有意义的不等式组,从而求函数定义域。2、求定义域模板⑴、y二__-

17、x—3x+2解:耍使函数有意义,当且仅当宀3兀+2工0X主1且兀H22・••函数歹=—的定义域—3x+2是{xxh1JLLxh2}⑶、求函数y=log2(x-l)的定义域解:要使函数有意义,当且仅当兀-1>0解得:X>1・••函^Ly=log2(x-1)的定义域是{兀

18、兀>1}(2)、丫二寸X》-2x-15解:耍使函数有意义,当且仅Sx2-2x-15>0解得:x<-3^x>5/.函数y=Jx1-2兀-15的定义域是{x卜<-3或%>5}⑷函数几劝=a/3x-1+丁2-3册定义域解:要使函数有意义,3x-l>02-3x>01?33.••函数的定义域是L-

19、

20、3、函数的单调性(1)若兀]<兀2且f(Xl)/(兀2),则f(X)是减函数⑶求函数的单调区间橹区闻(弋,2]龟5]减区阖-2]%P、3](4)用定义法判断函数的单调性~定义*的写法步骤=1、设値:设x1?x2e给定区「可,_E1xl0则函数在给定的区间上是减函数例2:请写出函数彳Q="_i的羊调递增区问,并证明函数在这个区间上的单调性。:答:函数的单调递縮区

21、间为(0,+qoOOOLE明二ixx7,x2e(0,+8)内任意两个实数,且兀zv…贝Ij/i

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。