欢迎来到天天文库
浏览记录
ID:42706351
大小:4.27 MB
页数:158页
时间:2019-09-20
《新人教版'九年级数学上册教案教材汇总材料》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、''2017—2018学年度第一学期九年级数学教学进度表周序日期教学工作内容及课时安排18.24—8.3021.1一元二次方程221.2降次——解一元二次方程228.31—9.621.2降次——解一元二次方程539.7—9.1321.3实际问题与一元二次方程及数学活动2《一元二次方程》单元小结与练习349.14—9.2021.1二次函数的图像与性质559.21—9.2721.2二次函数与一元二次方程221.3实际问题与二次函数2《二次函数》单元小结与练习169.28—10.423.1图形的旋转223.2中心对称3710.5—10.1123.3课题学习图案设
2、计2《旋转》单元考及讲评3810.12—10.1824.1圆5910.19—10.2524.2点、直线、圆和圆的位置关系51010.26—11.1期中考复习1111.2—11.8期中考试与试卷分析1211.9—11.1524.3正多边形和圆224.4弧长和扇形面积21311.16—11.2124.4弧长和扇形面积2《圆》单元考及讲评31411.23—11.2925.1随机事件与概率41511.30—12.625.2用列举法求概率325.3用频率估计概率11612.7—12.1325.4课题学习及数学活动2《概率初步》单元考及讲评21712.14—12.20
3、九年级数学下册内容1812.21—12.27九年级数学下册内容1912.28—1.3九年级数学下册内容201.4—1.10期末考复习211.11—1.17期末考复习及考试''教学时间课题21.1一元二次方程课型新授教学媒体多媒体教学目标知识技能1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根过程方法1..通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其
4、一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点一元二次方程的概念,一般形式和一元二次方程的根的概念教学难点通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。从这
5、节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念.二、探究新知l探究课本问题2分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请x个队参赛,如何用含x的代数式表示全部比赛场数?整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0;;;;l概念归纳:1.一元二次方程定义:分析:首先它是整式方程,然后未知数的个数是1,最高次数是2.2.一元二次方程的一般形式:分析:.为什么规定≠0?.方程左边各项之间的运算关系是什么?关于x的一元二次方程的各项分
6、别是什么?各项系数是什么?3.特殊形式:;;l课本例题分析:类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号.点题,板书课题.学生读题找等量关系列方程.学生观察所列方程整理后的特点,把握方程结构,初步感知一元二次方程概念.学生尝试叙述,然后师生归纳师生分析概念和一般形式.学生根据相关概念作答,复习巩固.学生类比一元一次方程的解尝试叙述联系曾经学习过的方程知识衔接本章,明确本节课内容淡化列方程难度,重点突出方程特点通过比较,对一元二次方程的概念达到共识,从而为掌
7、握概念作准备.全面理解和掌握识记、理解相关概念通过类比,迁移提高''l一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程x2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4.3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0(2)x2+1=0(3)x2-3x=0(4)4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程的根是8和-7,但是答案只能有一个,应该是哪个?归纳:一元二次方程的根的情况一元二次方程的解要满足实际问题三、课堂训练1.课本练习2补充
8、:1).在下列方程中,一元二次方程的个数是().①3x2+7=0②
此文档下载收益归作者所有