游程编码的图像压缩

游程编码的图像压缩

ID:42673382

大小:677.50 KB

页数:16页

时间:2019-09-19

游程编码的图像压缩_第1页
游程编码的图像压缩_第2页
游程编码的图像压缩_第3页
游程编码的图像压缩_第4页
游程编码的图像压缩_第5页
资源描述:

《游程编码的图像压缩》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、汕头大学工学院三级项目报告课程名称:信息论与编码课程设计题目:使用游程编码的图像压缩指导教师:唐雅娟系别:电子工程系专业:电子信息工程学号:09142018姓名:梁锡坚合作者完成时间:2012年4月9日至4月23日成绩:评阅人:唐雅娟十六一、内容与要求一.目的1、熟练掌握游程编码的方法;掌握游程码的编程实现。二.内容1、根据游程编码的方法步骤,编写二元游程编码的程序;2、对一幅二值图像进行编码。二、报告正文1课题描述游程编码又称“运行长度编码”或“行程编码”,是一种统计编码,该编码属于无损压缩编码,是栅格数据压缩的重要编码方法。对于二值图有效。在对图像数据进行编码时,沿一定方向排列的具

2、有相同灰度值的像素可看成是连续符号,用字串代替这些连续符号,可大幅度减少数据量。相应地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。2信源编码2.1概念一种以提高通信有效性为目的而对信源符号进行的变换;为了减少或消除信源剩余度而进行的信源符号变换,对输入信息进行编码,优化信息和压缩信息并且打成符合标准的数据包2.2编码方式最原始的信源编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就

3、是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。另外,在数字电视领域,信源编码包括通用的MPEG—2编码和H.264(MPEG—Part10AVC)编码等。 相应地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。2.3通信系统模型[信源]->[信源编码]->[信道编码]->[信道传输+噪声]->[信道解码]->[信源解码]->[信宿]  一般信息论的书上都会有信源编码和信道编码的具体讲解,包括具体的编码方法。2.4描述为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。具体说,就是

4、针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。十六  既然信源编码的基本目的是提高码字序列中码元的平均信息量,那么,一切旨在减少剩余度而对信源输出符号序列所施行的变换或处理,都可以在这种意义下归入信源编码的范畴,例如过滤、预测、域变换和数据压缩等。当然,这些都是广义的信源编码。 一般来说,减少信源输出符号序列中的剩余度、提高符号平均信息量的基本途径有两个:①使序列中的各个符号尽可能地互相独立;②使序列中各个符号的出现概率尽可能地相等。前者称为解除相关性,后者称为概率均匀

5、化。  信源编码的一般问题可以表述如下:若某信源的输出为长度等于M的符号序列集合式中符号A为信源符号表,它包含着K个不同的符号,A={ɑk

6、k=1,…,K},这个信源至多可以输出KM个不同的符号序列。记‖U‖=KM。所谓对这个信源的输出进行编码,就是用一个新的符号表B的符号序列集合V来表示信源输出的符号序列集合U。若V的各个序列的长度等于N,即式中新的符号表B共含L个符号,B={bl

7、l=1,…,L}。它总共可以编出LN个不同的码字。类似地,记‖V‖=LN。为了使信源的每个输出符号序列都能分配到一个独特的码字与之对应,至少应满足关系‖V‖=LN≥‖U‖=KM或者N/M≥logK/log

8、L。  假若编码符号表B的符号数L与信源符号表A的符号数K相等,则编码后的码字序列的长度N必须大于或等于信源输出符号序列的长度M;反之,若有N=M,则必须有L≥K。只有满足这些条件,才能保证无差错地还原出原来的信源输出符号序列(称为码字的唯一可译性)。可是,在这些条件下,码字序列的每个码元所载荷的平均信息量不但不能高于,反而会低于信源输出序列的每个符号所载荷的平均信息量。这与编码的基本目标是直接相矛盾的。下面的几个编码定理,提供了解决这个矛盾的方法。它们既能改善信息载荷效率,又能保证码字唯一可译。  离散无记忆信源的定长编码定理: 对于任意给定的ε>0,只要满足条件N/M≥(H(U)+

9、ε)/logL。那么,当M足够大时,上述编码几乎没有失真;反之,若这个条件不满足,就不可能实现无失真的编码。式中H(U)是信源输出序列的符号熵。  通常,信源的符号熵H(U)<logK,因此,上述条件还可以表示为【H(U)+ε】/logL≤N/M≤logK/logL。  特别,若有K=L,那么,只要H(U)<logK,就可能有N<M,从而提高信息载荷的效率。由上面这个条件可以看出,H(U)离logK越远,通过编码所能获得的效率改善就越显著。实质

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。